Influência da densidade de corrente e da agitação mecânica no processo de eletrodeposição de ligas Zn-Ni

Autores

DOI:

https://doi.org/10.33448/rsd-v9i9.7329

Palavras-chave:

Composição química; Eletrodeposição; Liga Zn-Ni; Microdureza; Planejamento fatorial.

Resumo

Foram avaliados os efeitos da densidade de corrente e agitação mecânica do banho no processo de eletrodeposição para obtenção da liga Zn-Ni. Foi utilizado um banho eletrolítico constituído de sulfato de níquel, sulfato de zinco, sulfato de sódio, ácido bórico e citrato de sódio em pH 7,0. A densidade de corrente foi avaliada na faixa de 10-50 mA/cm² e para a agitação mecânica foi avaliada na faixa de 30-70 rpm. Como ferramenta de otimização, foi utilizado um planejamento fatorial completo 2² com três elementos centrais associado à Metodologia de Superfície de Resposta (MSR). Foi observado que o aumento da densidade de corrente e da agitação mecânica provocou o aumento do percentual atômico de níquel nos revestimentos. O percentual de zinco aumentou com a diminuição da densidade de corrente. O ponto ótimo de níquel obtido foi de 39 at.%. A eletrodeposição foi do tipo anômala. A microdureza aumentou com o aumento do percentual de níquel e com a diminuição do percentual de Zn no revestimento. Os revestimentos apresentaram nódulos na superfície com diferentes tamanhos e formas.

Referências

Abou-Krisha, M. M., Rageh, H. M., & Matter, E. (2008). Electrochemical studies on the electrodeposited Zn-Ni-Co ternary alloy in different media. Surface and Coatings Technology, 202, 3739–3746.

Abou-Krisha, M. M. (2011). Influence of Ni2+ concentration and deposition potential on the characterization of thin electrodeposited Zn-Ni-Co coatings. Materials Chemistry and Physics, 125(3), 621–627.

Albalat, R., Gómez, E., Müller, C., Sarret, M., Vallés, E., & Pregonas, J. (1990). Electrodeposition of zinc-nickel alloy coatings: influence of a phenolic derivative. Journal of Applied Electrochemistry, 20, 635–639.

Assaf, F. H., El-Seidy, A. M. A., Abou-Krisha1, M. M. & Eissa, A. A. (2015). Electrodeposition and Characterization of Zn-Ni-Mn Alloy from Sulfate Bath: Influence of Current Density. International Journal of Electrochemical Science, 10, 5465-5478.

Barros-Neto, B., Scarminio, I. E., & BRUNS, R. (2010). Como fazer experimentos: aplicações na ciência e na indústria. 4th.

Beltowska-Lehman, E., Ozga, P., Swiatek, Z., & Lupi, C. (2002). Electrodeposition of Zn-Ni protective coatings from sulfate-acetate baths. Surface and Coatings Technology, 151–152, 444–448.

Brenner, A. (1963). Electrodeposition of Alloys (vol. I). New York: Academic Press.

Burkert, J. F. M., Maugeri, F., & Rodrigues, M. I. (2004). Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresource Technology, 91, 77–84.

Chang, L. M., Chen, D., Liu, J. H., & Zhang, R. J. (2009). Effects of different plating modes on microstructure and corrosion resistance of Zn-Ni alloy coatings. Journal of Alloys and Compounds, 479, 489–493.

Cojocaru, P., Magagnin, L., Gómez, E., & Vallés, E. (2010). Electrodeposition of CoNi and CoNiP alloys in sulphamate electrolytes. Journal of Alloys and Compounds, 503(2), 454–459.

Conde, A. A., M. A., & de Damborenea, J. J. (2011). Electrodeposition of Zn-Ni coatings as Cd replacement for corrosion protection of high strength steel. Corrosion Science, 53(4), 1489–1497.

Costa, J D, de Sousa, M. B., Alves, J. J. N., Evaristo, B. O., Queiroga, R. A., dos Santos, A. X., … Prasad, S. (2018). Effect of electrochemical bath composition on the preparation of Ni-W-Fe-P amorphous alloy. International Journal of Electrochemical Science, 13(3), 2969–2985.

Costa, J. D., de Sousa, M. B., Lia Fook, N. C. M., Alves, J. J. N., de Araújo, C. J., Prasad, S., … de Santana, R. A. C. (2016). Obtaining and characterization of Ni-Ti/Ti-Mo joints welded by TIG process. Vacuum, 133, 58–69.

Santos, A. X., Maciel, T. M., & de Santana, R. A. C. (2015). Avaliação de revestimentos a base de Inconel 625 depositados através do processo de soldagem GMAW em aço API 5L X70 utilizando planejamento fatorial. Revista Brasileira de Aplicações de Vácuo, 34(3), 128–140.

Dubent, S., Mertens, M. L. a D., & Saurat, M. (2010). Electrodeposition, characterization and corrosion behaviour of tin-20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath. Materials Chemistry and Physics, 120(2–3), 371–380.

Feng, Z., Li, Q., Zhang, J., Yang, P., Song, H., & An, M. (2015). Electrodeposition of nanocrystalline Zn–Ni coatings with single gamma phase from an alkaline bath. Surface and Coatings Technology, 270, 47–56.

Gavrila, M., Millet, J. P., Mazille, H., Marchandise, D., & Cuntz, J. M. (2000). Corrosion behaviour of zinc-nickel coatings, electrodeposited on steel. Surface and Coatings Technology, 123, 164–172.

Gentil, V. (2011). Corrosão (ed. 6). Rio de Janeiro: LTC.

Gharahcheshmeh, M. H., & Sohi, M. H. (2009). Study of the corrosion behavior of zinc and Zn-Co alloy electrodeposits obtained from alkaline bath using direct current. Materials Chemistry and Physics, 117, 414–421.

Ghaziof, S., & Gao, W. (2014). Electrodeposition of single gamma phased Zn–Ni alloy coatings from additive-free acidic bath. Applied Surface Science, 311, 635–642.

Hamid, Z. A. (2001). Thermodynamic parameters of electrodeposition of Zn-Co-TiO composite coatings. Anti-Corrosion Methods and Materials, 48, 235–241.

Hammami, O., Dhouibi, L., & Triki, E. (2009). Influence of Zn-Ni alloy electrodeposition techniques on the coating corrosion behaviour in chloride solution. Surface and Coatings Technology, 203(19), 2863–2870.

Hegde, A. C., Venkatakrishna, K., & Eliaz, N. (2010). Electrodeposition of Zn–Ni, Zn–Fe and Zn–Ni–Fe alloys. Surface and Coatings Technology, 205(7), 2031–2041.

Jeong, S. S., Mittiga, a., Salza, E., Masci, a., & Passerini, S. (2008). Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochimica Acta, 53, 2226–2231.

Lin, Z. F., Li, X. B., & Xu-, L. K. (2012). Electrodeposition and corrosion behavior of zinc-nickel films obtained from acid solutions: Effects of teos as additive. International Journal of Electrochemical Science, 7, 12507–12517.

Lodhi, Z. F., Mol, J. M. C., Hovestad, a., Terryn, H., & de Wit, J. H. W. (2007). Electrodeposition of Zn-Co and Zn-Co-Fe alloys from acidic chloride electrolytes. Surface and Coatings Technology, 202, 84–90.

López, R. (1999). Magnetic study of electrodeposited Cu_Co heterogeneous alloys. Journal of Magnetism and Magnetic Materials, 196–197, 53–55.

MacIej, A., Nawrat, G., Simka, W., & Piotrowski, J. (2012). Formation of compositionally modulated Zn-Ni alloy coatings on steel. Materials Chemistry and Physics, 132(2–3), 1095–1102.

Oliveira, A. L. M., Costa, J. D., de Sousa, M. B., Alves, J. J. N., Campos, A. R. N., Santana, R. A. C., & Prasad, S. (2015). Studies on electrodeposition and characterization of the Ni–W–Fe alloys coatings. Journal of Alloys and Compounds, 619, 697–703.

Ortiz-Aparicio, J. L., Meas, Y., Trejo, G., Ortega, R., Chapman, T. W., Chainet, E., & Ozil, P. (2007). Electrodeposition of zinc-cobalt alloy from a complexing alkaline glycinate bath. Electrochimica Acta, 52, 4742–4751.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [e-book].

Pushpavanam, M., Natarajan, S. R., Balakrishnan, K., & Sharma, L. R. (1991). Corrosion behaviour of electrodeposited zinc-nickel alloys. Journal of Applied Electrochemistry, 21, 642–645.

Qiao, X., Li, H., Zhao, W. & Li, D. (2013). Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings. Electrochimica Acta, 89, 771-777.

Rahman, M. J., Sen, S. R., Moniruzzaman, M., & Shorowordi, K. M. (2009). Morphology and Properties of Electrodeposited Zn-Ni Alloy Coatings on Mild Steel. Journal of Mechanical Engineering, 40(1).

Rao, K. M., & Subbarao, G. V. R. (2012). Optimum fly ash for mechanical stabilization of expansive soils using 2 2 factorial experimental design. Natural Hazards, 60, 703–713.

Santana, R. A. C, Prasad, S., Campos, A. R. N., Araújo, F. O., Da Silva, G. P., & De Lima-Neto, P. (2006). Electrodeposition and corrosion behaviour of a Ni-W-B amorphous alloy. Journal of Applied Electrochemistry, 36, 105–113.

Santana, R. A. C., Prasad, S., Moura, E. S., Campos, A. R. N., Silva, G. P., & Lima-Neto, P. (2007). Studies on electrodeposition of corrosion resistant Ni-Fe-Mo alloy. Journal of Materials Science, 42, 2290–2296.

Santos, A. X., Maciel, T. M., Costa, J. D., Sousa, M. B. de, Prasad, S., Campos, A. R. N., & Santana, R. A. C. de. (2019). Study on influence of the PTA-P welding process parameters on corrosion behavior of Inconel 625 coatings. Matéria (Rio de Janeiro), 24(1).

Soares, B. L. S., de Farias Ferreira, B. C., dos Santos, A. X., Maciel, T. M., & de Santana, R. A. C. (2020). Influência da corrente e taxa de alimentação na resistência à corrosão de revestimentos à base da liga Inconel 625 depositada por PTA-P. Revista Brasileira de Aplicações de Vácuo, 39(1), 56–66.

Soares, M. E., Souza, C. A. C., & Kuri, S. E. (2006). Corrosion resistance of a Zn-Ni electrodeposited alloy obtained with a controlled electrolyte flow and gelatin additive. Surface and Coatings Technology, 201(6), 2953–2959.

Srivastava, M., Ezhil Selvi, V., William Grips, V. K., & Rajam, K. S. (2006). Corrosion resistance and microstructure of electrodeposited nickel–cobalt alloy coatings. Surface and Coatings Technology, 201(6), 3051–3060.

Swathirajan, S. (1987). Electrodeposition of zinc + Nickel alloy phases and electrochemical stripping studies of the anomalous codeposition of zinc. Journal of Eletroanalytical Chemistry and Interfacial Electrochemistry, 221, 211–228.

Waalkes, M. P. (2003). Cadmium carcinogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 533(1–2), 107–120.

Downloads

Publicado

21/08/2020

Como Citar

COSTA, J. D.; OLIVEIRA, J. A. M. .; OLIVEIRA, A. S. .; RAULINO, A. de M. D. .; RAULINO, J. L. C. .; ALMEIDA, A. F. de .; CAMPOS, A. R. N. .; SANTANA, R. A. C. de . Influência da densidade de corrente e da agitação mecânica no processo de eletrodeposição de ligas Zn-Ni. Research, Society and Development, [S. l.], v. 9, n. 9, p. e355997329, 2020. DOI: 10.33448/rsd-v9i9.7329. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7329. Acesso em: 3 jul. 2024.

Edição

Seção

Engenharias