Atividade antitumoral de espécies de Apocynaceae utilizadas na medicina tradicional amazônica
DOI:
https://doi.org/10.33448/rsd-v9i10.9241Palavras-chave:
Apocynaceae; Câncer; Fiquímica; Citotoxicidade.Resumo
Este estudo revisa o uso de espécies de Apocynaceae para o tratamento de câncer e tumores na Amazônia. Bancos de dados e livros foram pesquisados para avaliações etnobotânicas e fitoquímicas das atividades citotóxicas e anticâncer de espécies de Apocynaceae. A literatura relata o uso de várias espécies amazônicas, como Asclepias curassavica, Himatanthus articulatus e Macoubea sprucei, no tratamento de tumores e cânceres. Estudos fitoquímicos em A. curassavica e H. articulatus mostraram que suas composições químicas são variáveis, possuindo cardenolideos, iridoides, flavonoides, esteroides e terpenos. A maioria das espécies não foi submetida a experimentos in vitro para atividade anticâncer, e as espécies avaliadas apresentaram respostas moderadas a fracas ou eram inativas. Outros estudos mostraram que iridoides, flavonoides e esteroides são promissores nos tratamentos antitumorais. Os seguintes mecanismos de ação foram atribuídos aos iridóides: estabilização do complexo topoisomerase I-DNA, alteração do citoesqueleto celular e indução de apoptose. Foi relatado que as atividades dos flavonoides incluem a indução de apoptose em células tumorais do fígado. Alguns autores sugerem que os flavonoides reduzem a resposta celular ao estresse oxidativo, o que reduz a disfunção mitocondrial e a morte celular. Em resumo, as espécies Apocynaceae parecem ser promissoras como fonte de agentes antitumorais; no entanto, mais estudos são necessários para confirmar suas atividades antitumorais e para melhor elucidar os mecanismos subjacentes envolvidos.
Referências
Abdel-Karder, M. S., Wisse, J., Evans, J. W., van-der.Werff, H. & Kingston, D. G. I. (1997). Bioactive iridoids and new lignan from Allamanda carthatica and Himatanthus falax from the Suriname rainforest. J Nat Prod, 60(12), 1924-1927. https://doi.org/10.1021/np970253e.
Agra, M. F., Freitas, P. F. & Barbosa-Filho, J. M. (2007). Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Brazilian Journal of Pharmacognosy, 17(1), 114-140. https://doi.org/10.1590/S0102-695X2007000100021
Agra, M. F., Silva, K. N., Basílio, I. J. L. D., Freitas, P. F, Barbosa-Filho, J. M. (2008). Survey of medicinal plants used in the region Northeast of Brazil. Brazilian Journal of Pharmacognosy, 18(3), 472-508. https://doi.org/10.1590/S0102-695X2008000300023.
Aimi, N., Uchida, N., Ohya, N., Hosokawa, H., Takayama, H., Sakai, S., Mendonza, L. A., Polz, L. & Stöckigt, J.(1991). Novel indole alkaloids from cell suspension cultures of Aspidosperma quebracho blanco Schlecht. Tetrahedron Lett, 32(37), 4949-4952.
Allen, J. R. F. & Holmstedt, B. R. (1980). The simple β-carboline alkaloids, Phytochemistry, 19(8), 1573-1582. https://doi.org/10.1016/S0031-9422(00)83773-5
Al-Snafi, A. E. (2015). Chemical constituents and pharmacological effects of Asclepias curassavica - A review. Asian Journal of Pharmaceutical Sciences, 5(1), 83-87. Retrieved from https://www.academia.edu/11581129/CHEMICAL_CONSTITUENTS_AND_PHARMACOLOGICAL_EFFECTS_OF_ASCLEPIAS_CURASSAVICA_A_REVIEW.
Amaro, M. S., Filho, M. S., Guimarães, R. M. & Teófilo, E. M. (2006). Morfologia de frutos, sementes e de plântulas de janaguba (Himatanthus drasticus (Mart.) Plumel - Apocynaceae). Rev Bras Sementes, 28(1), 63-71. https://doi.org/10.1590/S0101-31222006000100009
Ariazi, E. A., Clark, G. M., & Mertz, J. E. (2002). Estrogen-related receptor a and estrogen-related receptor g associate with unfavorable and favorable biomarkers, respectively, in human breast cancer. Cancer research, 62(22), 6510-6518. Retrieved from https://cancerres.aacrjournals.org/content/62/22/6510.
Avila, M. A., Velasco, J. A., Cansado, J. & Notario, V. (1994). Quercetin mediates the down regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer research, 54(9), 2424-2428. Retrieved from https://pubmed.ncbi.nlm.nih.gov/8162591/.
Barreto, A. S., Carvalho, M. G., Nery, I. A., Gonzaga, L. & Kaplan,cM. A. C. (1998). Chemical constituents from Himatanthus articulata. J. Braz. Chem. Soc, 9(5), 430-434. https://doi.org/10.1590/S0103-50531998000500004.
Behling, E. B., Sendão, M. C., Francescato, H. D. C., Antunes, L. M. G. & Bianchi, M. L. P. (2004). Flavonóide quercetina: aspectos gerais e ações biológicas. Alimentos e Nutrição, 15(3), 285-292. Retrieved from http://serv-bib.fcfar.unesp.br/seer/index.php/alimentos/article/viewFile/89/102.
Boots, A. W., Balk, J. M., Bast, A. & Haenen, R. M. M. (2005) The reversibility of the glutathionyl-quercetin adduct spreads oxidized quercetin-induced toxicity. Biochem Biophys Res Commun, 338(2), 923-929. doi: 10.1016/j.bbrc.2005.10.031.
Boots, A. W., Kubben, N., Haenen, G. R. M. M. & Bast, A. (2003). Oxidized quercetin reacts with thiols rather than with ascorbate: implication for quercetin supplementation. Biochem Biophys Res Commun, 308(3), 560-565. doi: 10.1016/s0006-291x(03)01438-4.
Boots, A. W., Li, H., Schins, R. P. F., Duffin, R., Heemskerk, W. M., Bast, A. & Haenen, G. R. M. M. (2007).The quercetin paradox. Toxicol Appl Pharmacol, 222(1), 89-96. doi: 10.1016/j.taap.2007.04.004.
Brandão, H. N., David, J. P., Couto, R. D., nascimento, J. A. P. & David, J. M. (2010). Química e farmacologia de quimioterápicos antineoplásicos derivados de plantas. Quim Nova, 33(6), 1359-1369. doi.org/10.1590/S0100-40422010000600026.
Brandão, M. G. L., Cosenza, G. P., Moreira, R. A. & Monte-Mor, R. L. M. (2006). Medicinal plants and other botanical products from the Brazilian Official Pharmacopoeia. Rev Bras Farmacogn, 16(3), 408-420. http://dx.doi.org/10.1590/S0102-695X2006000300020
Cavallini, A., Notarnicola, M., Giannini, R., Montemurro, S., Lorusso, D., Visconti, A., Minervini, F. & Caruso, M. G. (2005). Oestrogen receptor-related receptor alpha (ERRα) and oestrogen receptors (ERα and ERβ) exhibit different gene expression in human colorectal tumour progression. Eur J Cancer, 41(10), 1487-1494. doi: https://doi.org/10.1016/j.ejca.2005.04.008.
Chang, Y. C., Chou, F. P., Huang, H. P., Hsu, J. D. & Wang, C. J. (2004). Inhibition of cell cycle progression by penta-acetyl geniposide in rat C6 glioma cells. Toxicol Appl Pharmacol, 198(1), 11-20. https://doi.org/10.1016/j.taap.2004.03.004.
Cheung, C. P., Yu, S., Wong, K. B., Chan, L. W., Lai, F. M. M., Wang, X., Suetsugi, M., Chen, S. & Chan, F. L. (2004). Expression and functional study of estrogen receptor-related receptors in human prostatic cells and tissues. J Clin Endocrinol Metab, 90(3), 1830-1844. doi: 10.1210/jc.2004-1421.
Chierrito, T. P., Aguiar, A. C. C., Andrade, I. M., Ceravolo, I. P., Gonçalves, R. A. C., Oliveira, A. J. B. & Krettli, A. U. (2014). Anti-malarial activity of indole alkaloids isolated from Aspidosperma olivaceum. Malar J, 13(142), 2-10. Retrieved from http://www.malariajournal.com/content/13/1/142
CHOI, E. J. & AHN, W. S. (2008). Kaempferol induced the apopitosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr Res Pract, 2(4), 322-325. doi: 10.4162/nrp.2008.2.4.322.
Choi, E. J. & Ahn, W. S. (2008). Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB- 453 cells. Nutr. Res. Pract, 2(4), 322-325. doi: 10.4162/nrp.2008.2.4.322.
Cragg, g. m. & Newman, D. J. (2005). Plants as a source of anti-cancer agents, J Ethnopharmacol, 100(1-2), 72-79. doi: 10.1016/j.jep.2005.05.011.
Elia, G., Amici, C., Rossi, A. & Santoro, M. G. (1996). Modulation of prostaglandin A1-induced thermotolerance by quercetin in human leukemic cells: role of heat shock protein 70. Cancer research, 56(1), 10-217. Retrieved from https://pubmed.ncbi.nlm.nih.gov/8548766/.
El-Sayed, A., Handy, G. A. & Cordell, G. A. (1980). Catharanthus alkaloids XXIII. 21'-oxo-leurosine from Catharanthus roseus (Apocynaceae). J Nat Prod, 43(4), 157-161. https://doi.org/10.1021/np50007a016
Endo, Y., Hayashi, H., Sato, T., Moruno, M., Ohta, T. & Nozoe, S. (1994). Confluentic acid and 2'-O-methylperlatolic acid, monoamine oxidase B inhibitors in a Brazilian plant, Himatanthus sucuuba. Chem. Pharm. Bull, 42(6), 1198-201. doi: 10.1248/cpb.42.1198.
Endress, M. E., Liede-Schumann S. & Meve, U. (2014). An updated classification for Apocynaceae. Phytotaxa, 159(3), 175-194. Retrieved from https://www.biotaxa.org/Phytotaxa/article/view/phytotaxa.159.3.2/0.
Ferraresi, R., Troiano, L., Roat, E., Lugli, E., Nemes, E., Nasi, M., Pinti, M., Fernandez, M. I. G., Cooper, E. L. & Cossarizza, A. (2005). Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radic Res, 39(11), 1249-1258. doi: 10.1080/10715760500306935.
Ferry, D. R., Smith, A., Malkhandi, J., Fyfe, D. W., Takats, P. G., Anderson, D., Baker, J. & Kerr, D. (1996). Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin cancer res, 2(4), 659-668. Retrieved from https://pubmed.ncbi.nlm.nih.gov/9816216/.
Flora do Brasil 2020 em construção (2017). Jardim Botânico do Rio de Janeiro, "specimen of Asclépias curassavica. Retrieved from http://floradobrasil.jbrj.gov.br/
Galvéz, M., Martin-Cordero, C. & Ayuso, M. J. (2005). Iridoids as DNA topoisomerase I poisons. J Enzyme Inhib Med Chem, 20(4), 389-392. https://doi.org/10.1080/14756360500141879.
Gibellini, L., Pinti, M., Nasi, M., Montagna, J. P., Biasi, S. D. Toat, E., Bertoncelli, L., Cooper, E. L. & Cossarizza, A. (2011). Quercetin and Cancer Chemoprevention. Evid Based Complement Alternat Med, 2011 591356. doi: 10.1093/ecam/neq053.
Hall, E. J. (1997). Etiology of cancer: physical factors. In: V.T DeVita Junior; S Hellman, S.A Rosenberg, eds. Principles & Practice of Oncology. 5. ed. Philadelphia: Lippincortt- Raven, 203-218.
Hamdi, H. K. & Castellon, R. (2005). Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochem Biophys Res Commun, 334(3), 769-778. https://doi.org/10.1016/j.bbrc.2005.06.161.
Hanahan, D & Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144 (5), 646-74. doi: 10.1016/j.cell.2011.02.013.
Hanahan, D., & Weinberg, L. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70. doi: 10.1016/s0092-8674(00)81683-9. .
Hansen, R. K., Oesterreich, S., Lemieux, P., Sarge, K. D. & Fuqua, S. A. W. Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Biochem Biophys Res Commun, 239(3), 851-856.
https://doi.org/10.1006/bbrc.1997.7572.
Hartwell, J. L. (1982). Plants used against cancer. Lawrence, MA: Quarterman publication, 34(4), 438-439.
Henrique, M. C., Nunomura, S. M. & Pohlit, A. M. (2010). Alcalóides indólicos de cascas de Aspidosperma vargasii e A. Desmanthum. Quim Nova, 33(2), 284-287. https://doi.org/10.1590/S0100-40422010000200010.
Huss, J. M., Kopp, R. P. & Kelly, D. P. Peroxisome proliferator activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucinerich interaction motif within PGC-1alpha. J Biol Chem, 277(43), 40265-40274. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.9210&rep=rep1&type=pdf.
Kamei, Y., Ohizumi, H., Fujitani, Y., Nemoto, T., Tanaka, T., Takahashi, N., Kawada, T., Miyoshi, M., Ezaki, O. & Kakizuka, A. (2003). PPAR gamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci U S A, 100(21), 12378-12383. doi: 10.1073/pnas.2135217100.
Kardono, L. B., Angerhofer, C. K., Tsauri, S., Padmawinata, K., Pezzuto, J. M. & Kinghorn, A. D. (1991). Cytotoxic and antimalarial constituents of the roots of Eurycoma longifolia. J Nat Prod, 54(5), 1360-1367. doi: 10.1021/np50077a020..
Kim, G. N. & Jang, H. D. (2009). Protective mechanism of quercetin and rutin using glutathione metabolism on H2O2-induced oxidative stress in hepg2 cells. Natural Compounds and Their Role in Apoptotic Cell Signaling Pathways, 1171,530-537. doi: 10.1111/j.1749-6632.2009.04690.x.
Kim, H. K., Park, H. R., Lee, J., Chung, T. S., Chung, H. & Chung, J. (2007). Down-regulation of iNOS and TNF-α expression by kaempferol via NF-ᶄB inactivation in aged rat gingival tissues. Biogerontology, 8(4), 399-408. Retrieved from https://www.semanticscholar.org/paper/Down-regulation-of-iNOS-and-TNF-alpha-expression-by-Kim-Park/91ede4414a1c25b710907fc34b8097540445b8d0.
Kim, S. H. & Choi, K. C. (2013). Anti-cancer effect and underlying mechanism(s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol Res, 29(4), 229-234. doi: 10.5487/TR.2013.29.4.229.
Klohs, W. D., Fry, D. W. & Kraker, A. J. (1997). Inhibitors of tyrosine kinase. Curr Opin Oncol, 9(6), 562-568. doi: 10.1097/00001622-199711000-00012.
Koishi, M., Hosokawa, N., Sato, M., Nakai, A., Hirayoshi, K., Hiraoka, M., Abe, M. & Nagata, K. (1992). Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermotolerance in a human colon carcinoma cell line. Cancer research, 83(11), 1216-1222. doi: 10.1111/j.1349-7006.1992.tb02748.x.
Kumar, A., Patil, D., Rajamohanan, P. R. & AHMAD, A. (2013). Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One, 8(9), 1-10. https://doi.org/10.1371/journal.pone.0071805
Kuo, W. H., Chou, F. P., Young, S. C., Chang, Y. C. & Wang, C. J. (2005). Geniposide activates GSH S-transferase by the induction of GST M1 and GST M2 subunits involving the transcription and phosphorylation of MEK-1 signaling in rat hepatocytes. Toxicol Appl Pharmacol, 208(2), 155-62. https://doi.org/10.1016/j.taap.2005.02.013.
Kupchan, S. M., Knox, J. R., Kelsey, J. E. & Renauld, J. A. S. (1964). Calotropin, a cytotoxic principle isolated from Asclepias curassavica L. Science, 146(3652) 1685-1686. DOI: 10.1126/science.146.3652.1685.
Lamson, D. W. & Brignall, M. S. (2000). Antioxidants and Cancer III: Quercetin. Altern Med Rev, 5(3), 196-208. Retrieved from https://pubmed.ncbi.nlm.nih.gov/10869101/.
Laphookhieo, S., Maneerat, W. & Koysomboon, S. (2009). Antimalarial and cytotoxic phenolic compounds from Cratoxylum maingayi and Cratoxylum cochinchinense. Molecules, 14(4), 1389-1395. doi: 10.3390/molecules14041389.
Li, C., Zhao, Y., Yang, D., Yu, Y., Guo, H., Zhao, Z., Zhang, B. & Yin, X. (2014). Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochem Cell Biol, 93(1), 16-27. https://doi.org/10.1139/bcb-2014-0067
Li, J. Z., Liu, H. Y., Lin, I. J., Hao, X. J., Ni, W. & Chen, C. X. (2008). Six new C21 steroidal glycosides from Asclepias curassavica L. Steroids, 73(6), 594-600. https://doi.org/10.1016/j.steroids.2008.01.015.
Li, J. Z., Qing, C. & and Chen, C. X. "Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica", Bioorg Med Chem Lett, vol. 19, no. 7, pp. 1956-1959, 2009.
Lorenzi, H. & Souza, H. M. S. (2008) Plantas Ornamentais no Brasil: Arbutivas, Herbaceas e Trepadeiras, Nova Odessa, SP: Editora Plantarum, 3ed.
Lübeck, W. (2001). O Poder Terapêutico do Ipê Roxo – a árvore divina dos xamãs da América do Sul. 1ed. São Paulo: Madras.
Luo, H., Rankin, G. O., Li, Z., DePriest, L. & Chen, Y. C. (2011). Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem, 128(2), 513-519. doi: 10.1016/j.foodchem.2011.03.073.
Luo, H., Rankin, Rankin, G. O., Liu, L., Daddysman, M. K., Jiang, B. H. & Chen, Y. C. (2009). Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr Cancer, 61(4), 554-563. doi: 10.1080/01635580802666281.
Mena-Rejon, G., Caamal-Fuentes, E., Cantillo-Ciau, Z., Cedillo-Rivera, R., Flores-Guido, J. & Moo-Puc, R. In vitro cytotoxic activity of nine plants used in Mayan traditional medicine. J Ethnopharmacol, 121(3), 462-465. doi: 10.1016/j.jep.2008.11.012.
Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaité, E. & Segura-Aguilar, J. (1999). Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med, 26(1-2), 107-116. doi: 10.1016/s0891-5849(98)00167-1.
Milliken, W. (1997). Traditional antimalarial medicine in Roraima, Brazil. Econ Bot, 51(3), 212-237. Retrieved from. https://link.springer.com/article/10.1007/BF02862091.
Moreno, P. R. H., Heijden, R. &. Verpoorte, R. (1995). Cell and tissue cultures of Catharanthus roseus: A literature survey. Plant Cell Tissue Organ Cult, 42(1), 1-25. Retrieved from https://link.springer.com/article/10.1007/BF00037677.
Mousinho, K. C., Oliveira, C. C., Ferreira, J. R. O., Carvalho, A. A., Magalhães, H. I. F., Bezerra, D. P., Alves, A. P. N. N., Costa-Lotufo, L. V., Pessoa, C., Matos, M. P. V., Ramos, M. V. & Moraes, M. O. (2011). Antitumor effect of laticifer proteins of Himatanthus drasticus (Mart.) Plumel – Apocynaceae. J Ethnopharmacol, 137(1), 421-426. doi: 10.1016/j.jep.2011.04.073.
Murakami, A., Ashida, H. & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Lett, 269(2), 315-325. doi:10.1016/j.canlet.2008.03.046.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. Retrieved from https://www.nature.com/articles/35002501.
Nazar, n., Goyder, D. J., Clarkson, J. J., Mahmood, T. & Chase, M. W. (2013) The taxonomy and systematics of Apocynaceae: where we stand in 2012. Biol J Linn Soc Lond, 171(3), 482-490. https://doi.org/10.1111/boj.12005.
Neto, C. C., Owens, C. W., Langfield, R. D., Comeau, A. B., Onge, J. S., Vaisberg, A. J. & Hammond, G. B. (2002). Antibacterial activity of some medicinal plants from the Callejon de Huaylas. J Ethnopharmacol, 79(1), 133-138. https://doi.org/10.1016/S0378-8741(01)00398-1.
Newman, D. J., Cragg, G. M. & Snader, K. M. (2003). Natural products as sources of new drugs over the period 1981-2002, J Nat Prod, 66(7), 1022-1037.doi: 10.1021/np030096l.
Nguyen, T. T. T., Tran, E., Ong, C. K., Lee, S. K., Do, P. T., Huynh, T. T., Lee, J. J., Tan, Y., Ong, C. S & Huynh, H. (2003). Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells Is mediated by activation of MEK-MAPK, J Cell Physiol, 197(1), 110-121. doi: 10.1002/jcp.10340.
Oesterreich, S., Hilsenbeck, S. G., Ciocca, D. R., Allred, D. C., Clark, G. M., Chamness, G. C., Osborne, C. K. & Fuqua, S. A. The small heat shock protein HSP27 is not an independent prognostic mark in axillary lymph node-negative brest cancer patients. Clin Cancer Res, 2(7), 1199-1206. Retrieved from https://pubmed.ncbi.nlm.nih.gov/9816288/.
Oliveira, V. B., Freitas, M. S. M., Mathias, L., Braz-Filho, R. & Vieira, I. J. C. (2009). Atividade biológica e alcalóides indólicos do gênero Aspidosperma (Apocynaceae): uma revisão. Rev Bras Pl Med Botucatu, 11(1), 92-99. http://dx.doi.org/10.1590/S1516-05722009000100015
Pang, J.L., Ricupero, D. A., Huang, S. Fatma, N., Singh, D. P., Romero, J. R. & Chattopadhyay, N. (2006). Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem Pharmacol, 71(6), 818-826. doi: 10.1016/j.bcp.2005.12.023.
Park, C. H., Chang, J. Y., Hahm, E. R., Park, S., Kim, H. K. & Yang, C. H. (2005). Quercetin, a potent inhibitor against b-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun, 328(1), 227-234. https://doi.org/10.1016/j.bbrc.2004.12.151.
Patnaik, G. K. & Köhler, E. (1978). Pharmacological investigation on asclepin--a new cardenolide from Asclepias curassavica. Part II. Comparative studies on the inotropic and toxic effects of asclepin, g-strophantin, digoxin and digitoxin. Arzneimittelforschung, 28(6), 1368-1372, 1978. Retrieved from https://pubmed.ncbi.nlm.nih.gov/380581/.
Peng, C. H., Tseng, T. H., Huang, C. N., Hsu, S. P. & Wang, C. J. (2005) Apoptosis induced by penta-acetyl geniposide in C6 glioma cells is associated with JNK activation and Fas ligand induction. Toxicol Appl Pharmacol, 202(2), 172-179. doi: 10.1016/j.taap.2004.06.016.
Perdue, G. P. &. Blomster, R. N. (1978). South American plants III: Isolation of fulvoplumierin from Himatanthus sucuuba (M. Arg.) Woodson (apocynaceae). Brazilian Journal of Pharmaceutical Sciences, 67(9), 1322-1323. https://doi.org/10.1002/jps.2600670936
Pereira, A. S., Shitsuka, D. M., Pereira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria: UFSM, NTE. Retrieved from https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf
Pereira, A. S. S., Simões, A. O. & Santos, J. U. M. Taxonomy of Aspidosperma Mart. (Apocynaceae, Rauvolfioideae) in the State of Pará, Northern Brazi. Biota Neotrop, 16(2), 1-23. http://dx.doi.org/10.1590/1676-0611-BN-2015-0080
Pereira, M. M., Jácome, R. L. R. P., Alcântara, A. F. C., Alves, R. B. & Raslan, D. S. (2007). Alcalóides indólicos isolados de espécies do gênero Aspidosperma (Apocynaceae). Quim Nova, 30(4), 970-983. https://doi.org/10.1590/S0100-40422007000400037.
Pungitore, C. R., Ayub, M. J., García, M., Borkowski, E. J., Sosa, M. E., Ciuffo, C., Giordano, O. S. & Tonn, C. E. (2004). Iridoids as allelochemicals and DNA polymerases inhibitors. J. Nat. Prod, 67(3), 357-361. https://doi.org/10.1021/np030238b.
Quinet, C. G. P. & Andreata, R. H. P. (2005). Estudo taxonômico e morfológico das espécies de Apocynaceae Adans. na reserva Rio das Pedras, Município de Mangaratiba, Rio de Janeiro, Brasil. Rev Bras Bot; 56, 13-74. Retrieved from http://www.anchietano.unisinos.br/publicacoes/botanica/botanica56/a02.pdf.
Ranelletti, F. O., Ricci, R., Larocca, L. M., Maggiano, N., Capelli, A., Scambia, G., Benedetti-Panici, P., Mancuso, S., Sumi, C. & Piantelli, M. (1992). Growth-inhibitory effect of quercetin and presence of type-II estrogen-binding sites in human colon-cancer cell lines and primary colorectal tumors. Int J Cancer, 50(3), 486-492. doi: 10.1002/ijc.2910500326.
Rebouças, S. O., Grivicich, I., Santos, M. S., Rodrigues, P., Gomes, M. D., Oliveira, S. Q., Silva, J & Ferraz, A. B. F. (2011). Antiproliferative effect of a traditional remedy,Himatanthus articulates bark, on human cancer cell lines. J Ethnopharmacol, 137(1), 926-929. doi: 10.1016/j.jep.2011.06.006.
Santos, A. C. B., Silva, M. A. P., Santos, M. A. F. & Leite, T. R. (2013). Levantamento etnobotânico, químico e farmacológico de espécies de Apocynaceae Juss. ocorrentes no Brasil. Brazilian journal of medicinal plants, 15(3), 442-458. https://doi.org/10.1590/S1516-05722013000300019
Scambia, G., Ranelletti, F. O., Panici, P. B., Piantelli, M., Vincenzo, R., Ferrandina, G., Bonanno, G., Capelli, A. & Maancuso, S. (1993). Quercetin induces type-II estrogen-binding sites in estrogen-receptor-negative (MDA-MB231) and estrogen-receptor-positive (MCF-7) human breast-cancer cell lines. Int J Cancer, 54(3), 462-466. doi: 10.1002/ijc.2910540318.
Serra, M., Shanley, P., Melo, T., Fantini, A., Medina, G., &. Vieira, P. From the forest to the consumer: the ecology, local management and trade of amapá amargoso Parahancornia fasciculata (Poir) Benoist in the state of Pará. Recent developments and case studies. In: Albuquerque, U. P., Hanazaki. N. eds. (2010) Recent developments and case studies in ethnobotany. Recife: Sociedade Brasileira de Etnobiologia/Núcleo de Publicações em Ecologia e Etnobotânica Aplicada, 213-231.
Shi, L. M., Myers, T. G., Fan, Y., O’Connor, P. M., Paull, K. D., Friende, S. H. & Weinstein, J. N. (1998). Mining the national cancer institute anticancer drug discovery database: Cluster analysis of ellipticine analogs with p53-inverse and central nervous system-selective patterns of activity. Mol Pharmacol, 53(2), 241-251. doi: 10.1124/mol.53.2.241.
Siegelin, M. D., Reuss, D. E., Habel, A., Herold-Mende, C. & Deimling, A. (2008). The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of surviving. Mol Cancer Ther, 7(11), 3566-3574. doi: 10.1158/1535-7163.MCT-08-0236.
Silva, J. R. A., Amaral, A. C. F., Silveira, C. V., Rezende, C. M. & Pinto, A. C. (2007). Quantitative determination by HPLC of irioids in the bark and latex of Himatanthus sucuuba. Acta Amazon, 37(1), 119-122. https://doi.org/10.1590/S0044-59672007000100014.
Silva, J. R. A., Rezende, C. M., Pinto, A. C., Pinheiro, M. L. B., Cordeiro, M. C., Tamborini, E., Young, C. M. & Bolzani, V. S. (1998). Ésteres Triterpênicos de Himatanthus sucuuba (Spruce) Woodson. Quim. Nova, 21(6), 702-704. http://dx.doi.org/10.1590/S0100-40421998000600005.
Silva, M. S., Fantini, A. C. & Shanley, P. (2011) Látex de amapá (Parahancornia fasciculata (Poir) Benoist, Apocynaceae): remédio e renda na floresta e na cidade. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, 6(2), .287-305.
Silva, R. A. D. (1929) Pharmacopeia dos Estados Unidos do Brasil. São Paulo, SP: Companhia Editora Nacional.
Sousa, E. L., Grangeiro, A. R. S., Bastos, I. V. G. A., Rodrigues, G. C. R., Silva, M. J., Anjos, F. B. R., Souza, I. A. & Sousa, C. E. L. (2010). Antitumor activity of leaves of Himatanthus drasticus (Mart.) Plumel-Apocynaceae (Janaguba) in the treatment of sarcoma 180 tumor. Brazilian Journal of Pharmaceutical Sciences, 43(2), 1-5. http://dx.doi.org/10.1590/S1984-82502010000200005.
Spina, A. P. (2004). Estudos taxonômicos, micro-morfológico e filogenético do gênero Himatanthus Willd. Ex Schult. (Apocynaceae: Rauvolfioideae-Plumerieae). 197f. Tese (Doutorado em Biologia Vegetal), Campinas, SP: Universidade Estadual de Campinas.
Suffredini, I. B., Paciencia, M. L. B., Varella, A. D. & Younes, R. N. (2006). In vitro prostate cancer cell growth inhibition by Brazilian plant extracts. Pharmazie, 61(8), 722-724. Retrieved from https://pubmed.ncbi.nlm.nih.gov/16964718/.
Suffredini, I. B., Paciencia, M. L. B., Varella, A. D. & Younes, R. N. (2007). In vitro cytotoxic activity of Brazilian plant extracts against human lung, colon and CNS solid cancers and leukemia. Fitoterapia, 78(3), 223-226, doi: 10.1016/j.fitote.2006.11.011.
Sun, P., Sehouli, J., Denkert, C., Mustea, A., Könsgen, D., Koch, I., Wei, L. & Lichtenegger, W. (2005). Expression of estrogen receptor-related receptors, a subfamily of orphan nuclear receptors, as new tumor biomarkers in ovarian cancer cells. J Mol Med, 83(6), 457-467. Retrieved from https://link.springer.com/article/10.1007/s00109-005-0639-3.
Suzuki, T., Miki, Y., Moriya, T., Shimada, N., Ishida, T., Hirakawa, H., Ohuchi, N. & Sasano, H. (2004). Estrogen-related receptor a in human breast carcinoma as a potent prognostic factor. Cancer research, 64(13), 4670-4676. doi: 10.1158/0008-5472.CAN-04-0250.
Thorburn, A. (2004). Death receptor-induced cell killing. Cell Signal, 16(2), 139-144. https://doi.org/10.1016/j.cellsig.2003.08.007.
Tokarnia, C. H., Döbereiner, J. & Peixoto, P. V. (2000) "Plantas Tóxicas do Brasil”. Rio de Janeiro, RJ: Helianthus, 2 ed.
Traxler, P. (2003). Tyrosine kinases as targets in cancer therapy – successes and failures. Oncologic, 7(2), 1472-8222. doi: 10.1517/14728222.7.2.215.
Trópicos®.org, (2017). internal research and world’s scientific community, "nomenclatural, bibliographic, and specimen of Asclépias curassavica. Retrieved from http://www.tropicos.org/
Tundis, R., Loizzo, M. R., Menichini, F., Statti, G. A. & Menichini, F. (2008). Biological and pharmacological activities of iridoids: Recent developments. Mini Rev Med Chem, 8(4), 399-420. doi: 10.2174/138955708783955926.
Vale, V. V., Vilhena, T. C., Trindade, R. C. S., Ferreira, M. R. C., Percário, S., Soares, L. F., Pereira, W. L., Brandão, G. C., Oliveira, A. O., Dolabela, M. F. & Vasconcelos, F. (2015). Anti-malarial activity and toxicity assessment of Himatanthus articulatus, a plant used to treat malaria in the Brazilian Amazon. Malar J, 14(132), 2-10. Retrieved from https://malariajournal.biomedcentral.com/articles/10.1186/s12936-015-0643-1.
Wang, J., Fang, F., Huang, Z., Wang, Y., & Wong, C. (2009). Kaempferol is an estrogen-related receptor a and g inverse agonist. FEBS Lett, 583(4), 643-647. https://doi.org/10.1016/j.febslet.2009.01.030.
Wang, K., Liu, R., Li, J., Mao, J., Lei, Y., Wu, J., Zeng, J., Zhang, T., Wu, H., Chen, L., Huang, C. & Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 7(9), 966-978. doi: 10.4161/auto.7.9.15863.
Wang, W., Li, L., Lin, W. L., Dickson, D. W., Petrucelli, L., Zhang, T., & Wang, X. (2013). The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum Mol Genet, 22(23), 4706-4719. doi: 10.1093/hmg/ddt319.
Yang, J. H., Hsia, T. C., Kuo, H. M., Chao, P. D. L., Chou, C. C., Wei, Y. H. & Chung, J. G. (2006). Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos, 34(2), 296-304. doi: 10.1124/dmd.105.005280.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Mirian Letícia Carmo Bastos; Rosana Moura Sarmento; Marcelo de Oliveira Bahia; Jaqueline da Silva Rodrigues; Valdicley Vieira Vale; Sandro Percário; Maria Fâni Dolabela
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.