Análise in silico do perfil farmacocinético e toxicológico de fármacos em pesquisa para o tratamento da COVID-19

Autores

DOI:

https://doi.org/10.33448/rsd-v9i11.9450

Palavras-chave:

COVID-19; Análise in silico; Cloroquina.

Resumo

A pesquisa em pauta tem como objetivo o fornecimento de informações sobre os medicamentos em estudo para o tratamento da Covid-19, além de elucidar dados dos parâmetros farmacocinéticos e toxicológicos que possam auxiliar na terapia do paciente acometido com o coronavírus, através de uma análise in silico. Para alcançar os objetivos propostos, utilizou-se de ferramentas in silico, empregando os softwares ACD/Chem Sketch (versão 14.0) e Marvin Sketch. A análise dos parâmetros farmacocinéticos e toxicológicos foi feita através do servidor PreADMET, que realiza a predição dos dados baseando-se na relação estrutura/atividade. Para complementar os dados coletados em ferramentas computacionais realizou-se um levantamento bibliográfico nas principais bases de dados sobre os parâmetros analisados. Conforme as análises dos resultados ADME os medicamentos abiraterona e brequinar são os que apresentam mais parâmetros farmacocinéticos desejáveis. Alguns dos medicamentos observados demonstraram respostas satisfatórias, em especial a cloroquina, que atendeu ao parâmetro de passagem na BHE, uma vez que o coronavírus vem causando manifestações no SNC, porém esta medicação está relacionada com o crescimento de mortes por arritmias. Já os parâmetros toxicológicos apresentam em sua maioria fármacos não mutagênicos e não carcinogênicos e, em relação ao hERG, a maioria classifica-se como médio risco. Os fármacos empregados no tratamento dos pacientes cardiopatas devem ser escolhidos cuidadosamente, pois alguns deles elevam o risco cardíaco. A ivermectina e a nitazoxanida apresentam metabólitos com potencial mutagênico, portanto, devem ser utilizados com cautela.

Referências

Alliance, d (2016). Estudo químico, predições in silico das propriedades adme/tox e atividade larvicida do óleo essencial da raiz philodendron deflexum poepp. Ex schott sobre aedes egypti linneu e anopheles albirtasis s.l. Recuperado de: https://www2.unifap.br/ppcs/files/2017/12/estudo-qu%c3%8dmico-predi%c3%87%c3%95es-in-silico-das-propriedades-admetox-e-atividade-larvicida-do-%c3%93leo-essencial-da-raiz-philodendron-deflexum-poepp.-ex-schott-sobre-aedes.pdf

Amin, L (2013). P-glycoprotein inhibition for optimal drug delivery. Drug Targets Insights, 7, 27-34.

Ando, H., Hisaka, A., & Suzuki, H. (2015). A new physiologically based fármacokinetic model for the prediction of gastrointestinal drug absorption: translocation model. Drug Metabolism and Disposition, 23(4), 590-602.

Benfenati, E. (Ed.). (2016). In silico methods for predict in gdrug toxicity. Humana Press.

Brasil (2020). Covid-19 no Brasil. Recuperado de: https://susanalitico.saude.gov.br/extensions/covid-19_html/covid-19_html.html

Brasil. (2013). Guia para a condução de estudos não clínicos de toxicologia e segurança farmacológica necessários ao desenvolvimento de medicamentos (versão 2). Brasília: Agência Nacional de Vigilância Sanitária.

Calixto, L. A. (2012). Métodos de análise da rosiglitazona e pioglitazona e de seus principais metabólitos: aplicações de estudo de metabolismoin vitro. 148f. Tese de doutorado. Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo. Ribeirão Preto, Brasil.

Dolabela, M. F., Silva, A. R. P. D., Ohashi, L. H., Bastos, M. L. C., Silva, M. C. M. D. & Vale, V. V. (2018). Estudo in silico das atividades de triterpenos e iridoides isolados de Himatanthus articulatus (Vahl) Woodson. Revista Fitos, 12(3), 227-242.

Efinger, A., O'Driscoll, C. M., McAllister, M. & Fotaki, N. (2018). Previsão ADME In vitro e In silico. Em A. Talevi, e PA Quiroga (Eds.), Processos ADME em Ciências Farmacêuticas: Dosagem, Design e Farmacoterapia Sucesso Springer.

Felice, F. G. De., Moll, F. T., Moll, J., Munoz, D. P. & Ferreira, S T. (2020) Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the Central Nervous System. Trends in Neurosciences.

Franco, G. C. N., Cogo, K., Montan, M. F., Bergamaschi, C. de C., Groppo, F. C., Volpato, M. C., Andrade, E. D. de & Rosalen, P. L. (2007) Interações medicamentosas: fatores relacionados ao paciente (Parte I). Rev. Cir. Traumatol. Buco-Maxilo-fac., Camaragibe.

Golan, D. E., Jr Tashjian, A., Armstrong, E, J & Armstrong, A, W. (2017). Princípios de Farmacologia: a base fisiopatológica da farmacologia. Rio de Janeiro: Guanabara Koogan.

Grandis, R. A. (2016). Avaliação da atividade mutagênica de complexos heterolépticos de Rutênio (II) com atividade anti - Mycobacterium tuberculosis. p. 36-37. Dissertação – Faculdade de Ciências Farmacêuticas – USP. Araraquara, São Paulo.

Guan, W., Ni, Yu Hu, Z., Liang, C. W., Ou, J. H., Liu, H. L., Shan, C. L., Hui, D.S.C., Du, B., Li, L., Zeng, G Yuen., K. Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., Li S., Wang, J., Liang, Z., Peng, Y., Wei, L., Liu, Y., Hu, Y., Peng, P., Wang, J., Liu, J., Chen, Z., Li, G., Zheng, Z., Qiu, S., Luo, J., Ye, C., Zhu, S., Zhong N., (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 382, 1708-1720.

Jing, Y., Easter, A., Peters, D., Kim, N., & Enyedy, I. J. (2015). In silico prediction of hERG inhibition. Future medicinal chemistry, 7(5), 571-586.

Jónsdóttir, S. Ó., Jørgensen, F. S., & Brunak, S. (2005). Prediction methods and databases with in chemo informatics: emphasis on drugs and drug candidates. Bioinformatics, 21(10), 2145-2160.

Kauffmann, K., Gremm, L., Brendt, J., Schiwy, A., Bluhm, K., Hollert, H. & Büchs, J. (2020). Alternative typeof Ames testallows for dynamics mutagenicity detection by online monitoring of respiration activity. Science of The Total Environment, 137862.

Le, J. Absorção de medicamentos (2019). Recuperado de: https://www.msdmanuals.com/pt/casa/medicamentos/administra%C3%A7%C3%A3o-de-medicamentos-e-farmacocin%C3%A9tica/absor%C3%A7%C3%A3o-de-medicamentos.

Mehra, R. M., Dersai, S. S., Ruschitzka, F. & Patel, A.N. (2020). Hydroxychloroquine or chloroquine with or with out a macrolide for treatment of COVID-19: a multinational registry analysis. The Lancet, (20), 31180-6.

Moda, T. L (2011). Modelagem in silico de propriedades farmacocinéticas para avaliação de candidatos a novos fármacos (Doctoral dissertation, Universidade de São Pualo).

Moreira, R. R. D., Santos, L.E., Varella, S.D., Varanda, E. A. & Vilegas, W. (2002). Avaliação da atividade mutagênica do extrato etanólico bruto de Paepalanthus laipes (Eriocaulaceae) e dos compostos flavonoidicos 7- metoxilados relacionados. Revista Brasileira de Farmacognosia, 12 (1), 11-19.

Pimentel, V. D., Gomes, G. F., Costa, C. L. S. da. & Alves, W. dos S. Avaliação do potencial toxicológico e farmacocinético in sílico de Anadantoflavona. Princípios em farmácia, 3, 20-25.

Ohta, Y., Kazuki, K., Abe, S., Oshimura, M., Kobayashi, K. & Kazuki, Y. (2020). Developmentof Caco-2 cellsexpressing four CYPs via a mammalian artificial chromosome. BMC Biotechnology, 20 (44), 1-10.

Oliveira, E. H. A. (2020). Coronavírus: Prospecção cientifica e tecnológica dos fármacos em estudo para tratamento da Covid-19. Cadernos de Prospecção, 13, (2), 412-423.

Organização Mundial de Saúde. (2020). Pandemia por doença de coronavírus. Recuperado de: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

Rodrigues, N. F., Sacramento, C Q., Lima8, C. R., Silva, F. S. da,. Ferreira1, A, C., Mattos, M., de Freitas, C. S. de, Soares, V. C., Dias, S. da S. G., Temerozo, J. R., Miranda, M., Matos, A. R., Bozza, F. A., Carels, N., Alves, C. R., Siqueira, M. M., Bozza,P. T., Souza, T. M. L., (2020). Atazanavir inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production. Cold Spring Harbor Laboratory, (1), 020925.

Rothan, H. A., Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, 102433.

Santos, R. da C., Daniel, I. C., Próspero, D. F. A., & Costa, L. S. (2018). Modificação molecular incremental: análise de parâmetros físicoquímicos, farmacocinéticos e toxicológicos in silico de fármacos inibidores seletivos da recaptação de serotonina (ISRSs). Boletim Informativo Geum, 9 (2), 31-38.

Sharma, G., Lakkadwala, S., Modgil, A. & Singh, J. (2016). The role ofcell-penetratingpeptideandtransferrinonenhanceddeliveryofdrugtobrain. International Journalof molecular sciences,17 (6), 806-821.

Wolrd Health Organization. (2020). Q&A: Hydroxychloroquine and COVID-19. Recuperado de: https://www.who.int/news-room/q-a-detail/q-a-hydroxychloroquine-and-covid-19.

Zeiger, E.(2019). The test thatchangedthe world: the Ames test and the regulation of chemicals. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 841, 43–48.

Zhu, L., Zhao, J., Zhang, Y., Zhou, W., Yin, L., Wang, Y., Fan, Y., & Liu, H. (2018). ADME properties evaluation in drug discovery: In silico prediction of blood brain partitioning. Molecular diversity, 22(4), 979-990.

Downloads

Publicado

04/11/2020

Como Citar

BASTOS, K. Z. C.; CORTÊZ, A. H. da S. .; CORTÊZ, T. H. C. .; PINTO , I. S. .; SOUSA, J. A. de. Análise in silico do perfil farmacocinético e toxicológico de fármacos em pesquisa para o tratamento da COVID-19. Research, Society and Development, [S. l.], v. 9, n. 11, p. e529119450, 2020. DOI: 10.33448/rsd-v9i11.9450. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9450. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde