Análise de quantificação de recorrência de preços brasileiros do milho, da soja e da carne de frango

Autores

DOI:

https://doi.org/10.33448/rsd-v9i10.9461

Palavras-chave:

Alimentos; Insumos; Gráfico de recorrência; Análise quantificação de recorrência.

Resumo

O milho e o farelo de soja são os insumos mais utilizados na produção de ração para aves no Brasil. Com isso, alterações em seus preços influenciam no preço da carne de frango, bem como em seu consumo. A análise individual e conjunta do valor do milho, da soja e da carne de frango traz, portanto, informações relevantes sobre a dinâmica de preços dessas commodities. Objetivando tal contribuição, utiliza-se neste trabalho o método Gráfico de Recorrência; sua extensão, o Gráfico de Recorrência Cruzada; e a Análise de Quantificação de Recorrência, desenvolvidos para a análise da dinâmica não-linear de séries temporais. Os dados analisados aqui são os registros de preços diários do milho, da soja e da carne de frango no período de 02/08/2004 a 31/08/2020, fornecidos pelo Centro de Estudos Avançados em Economia Aplicada/Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo. Os resultados mostraram que os preços dessas commodities evoluem conjuntamente de maneira semelhante, porém os preços de soja e milho são mais sincronizados entre si do que com os de frango. Considerando a relação insumo/produto, mostrou-se que a variação temporal dos preços da carne de frango recebe maior influência do valor da soja que do de milho.

Referências

Afonso, L. C., Rosa, G. H., Pereira, C. R., Weber, S. A., Hook, C., Albuquerque, V. H. C., & Papa, J. P. (2019). A recurrence plot-based approach for Parkinson’s disease identification. Future Generation Computer Systems, 94, 282-292.

Artuzo, F. D., Foguesatto, C. R., Souza, Â. R. L. D., & Silva, L. X. D. (2018). Gestão de custos na produção de milho e soja. Revista Brasileira de Gestão de Negócios, 20(2), 273-294.

Bastos, J. A., & Caiado, J. (2011). Recurrence quantification analysis of global stock markets. Physica A: Statistical Mechanics and its Applications, 390(7), 1315-1325.

Baffes, J. (2013). A framework for analyzing the interplay among food, fuels, and biofuels. Global Food Security, 2(2), 110-116.

Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1-2), 43-50.

Centro de Estudos Avançados em Economia Aplicada. (2020). Disponível em: https://www.cepea.esalq.usp.br/br. Acessado em 08 de janeiro de 2020.

de Santana, L. I. T., da Silva, A. S. A., Menezes, R. S. C., & Stosic, T. (2020). Recurrence quantification analysis of monthly rainfall time series in Pernambuco, Brazil. Research, Society and Development, 9(9), e637997737-e637997737.

de Souza, A. E., dos Reis, J. G. M., Abraham, E. R., dos Santos, R. M., & Gobbetti, M. P. (2020). Simulação de operações de grãos em um terminal portuário. Agrarian, 13(47), 114-121.

de Souza, A. E., dos Reis, J. G. M., Raymundo, J. C., & Pinto, R. S. (2018). Estudo da produção do milho no Brasil. South American Development Society Journal, 4(11), 182.

Donner, R. V., Balasis, G., Stolbova, V., Georgiou, M., Wiedermann, M., & Kurths, J. (2019). Recurrence‐Based Quantification of Dynamical Complexity in the Earth's Magnetosphere at Geospace Storm Timescales. Journal of Geophysical Research: Space Physics, 124(1), 90-108.

Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters, 4(9), 973-977.

Goswami, B., Ambika, G., Marwan, N., & Kurths, J. (2012). On interrelations of recurrences and connectivity trends between stock indices. Physica A: Statistical Mechanics and its Applications, 391(18), 4364-4376.

Hochman, G., Rajagopal, D., Timilsina, G., & Zilberman, D. (2014). Quantifying the causes of the global food commodity price crisis. Biomass and Bioenergy, 68, 106-114.

Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis (Vol. 7). Cambridge university press.

Marwan, N., & Kurths, J. (2002). Nonlinear analysis of bivariate data with cross recurrence plots. Physics Letters A, 302(5-6), 299-307.

Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438(5-6), 237-329.

Marwan, N., Thiel, M., & Nowaczyk, N. R. (2002). Cross recurrence plot based synchronization of time series. arXiv preprint physics/0201062.

Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2002). Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Physical review E, 66(2), 026702.

Oliveira Junior, O. D. P., Wander, A. E., & Figueiredo, R. S. (2014). Relação entre os preços do milho, da soja e da carne de frango no período de 2004 a 2013. In Embrapa Arroz e Feijão-Artigo em anais de congresso (ALICE). In: CONGRESSO DA SOCIEDADE BRASILEIRA DE ECONOMIA, ADMINISTRAÇÃO E SOCIOLOGIA RURAL, 52., 2014, Goiânia. Heterogeneidade e suas implicações no rural brasileiro: anais. Goiânia: Sober, 2014..

Pereira, A. F. C., de Melo, A. F., Justo, W. R., & da Silva Melo, S. R. (2016). Cointegration and price transmission in poultry in Pernambuco. Informe GEPEC, 20(1), 129.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Strozzi, F., Zaldívar, J. M., & Zbilut, J. P. (2007). Recurrence quantification analysis and state space divergence reconstruction for financial time series analysis. Physica A: statistical mechanics and its applications, 376, 487-499.

Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980 (pp. 366-381). Springer, Berlin, Heidelberg.

United States Department of Agriculture Foreign Agricultural Service. (2020). Disponível em: https://apps.fas.usda.gov/psdonline/app/index.html#/app/topCountriesByCommodity#chart28. Acessado em 27 de agosto de 2020.

Webber Jr, C. L., & Zbilut, J. P. (2005). Recurrence quantification analysis of nonlinear dynamical systems. Tutorials in contemporary nonlinear methods for the behavioral sciences, 94(2005), 26-94.

Xu, Z., Wang, H., Wan, H., & Li, H. (2019). Quantitative Assessment of Nonstationarity of Wind Speed Signal Using Recurrence Plot. Journal of Aerospace Engineering, 32(6), 04019094

Yao, C. Z., & Lin, Q. W. (2017). Recurrence plots analysis of the CNY exchange markets based on phase space reconstruction. The North American Journal of Economics and Finance, 42, 584-596.

Zaitouny, A., Small, M., Hill, J., Emelyanova, I., & Clennell, M. B. (2020). Fast automatic detection of geological boundaries from multivariate log data using recurrence. Computers & Geosciences, 135, 104362.

Zbilut, J. P. (2005). Use of recurrence quantification analysis in economic time series. In Economics: Complex Windows (pp. 91-104). Springer, Milano.

Zbilut, J. P., Giuliani, A., & Webber Jr, C. L. (1998). Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Physics Letters A, 246(1-2), 122-128.

Zbilut, J. P., & Webber Jr, C. L. (1992). Embeddings and delays as derived from quantification of recurrence plots. Physics letters A, 171(3-4), 199-203.

Downloads

Publicado

30/10/2020

Como Citar

SANTANA, L. I. T. de .; SILVA, J. M. da; ARAÚJO, L. da S.; MOREIRA, G. R.; STOSIC, T. Análise de quantificação de recorrência de preços brasileiros do milho, da soja e da carne de frango. Research, Society and Development, [S. l.], v. 9, n. 10, p. e9979109461, 2020. DOI: 10.33448/rsd-v9i10.9461. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9461. Acesso em: 4 jan. 2025.

Edição

Seção

Ciências Exatas e da Terra