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Resumo 

Introdução: A Ressonância Magnética (RM) é uma das principais técnicas utilizadas no diagnóstico de gliomas, mas 

apresenta limitações na diferenciação tumoral e na previsão de marcadores moleculares. A inteligência artificial (IA) 

tem se destacado como ferramenta complementar, capaz de aumentar a acurácia diagnóstica e apoiar decisões clínicas. 

Método: Realizou-se uma revisão sistemática de artigos publicados entre 2015 e 2025 nas bases PubMed, MEDLINE 

e SciELO.  A qualidade metodológica foi avaliada pela ferramenta AMSTAR-2. Resultados: Os modelos baseados em 

DL e ML apresentaram desempenho promissor, com acurácia superior a 95% em alguns casos, especialmente nas redes 

neurais convolucionais (CNNs) e nos modelos híbridos que integram dados radiômicos e clínico-moleculares, 

apresentaram melhor sensibilidade e especificidade na diferenciação entre gliomas de baixo e alto grau. Entretanto, 

limitações como heterogeneidade metodológica, ausência de padronização dos protocolos de imagem, risco de 

overfitting e falta de validação externa robusta ainda restringem a aplicação clínica em larga escala. Discussão: A IA 

mostrou-se promissora para automatizar análises complexas de imagem, reduzir viesses subjetivos e oferecer maior 

precisão diagnóstica. Contudo, desafios persistem quanto à padronização dos protocolos, a dificuldade de 

compatibilidade entre os sistemas e transparência dos algoritmos, são fatores que dificultam a sua incorporação clínica. 

Conclusão: A integração da IA na RM representa um marco da neuroimagem oncológica, com um grande potencial 

revolucionário no diagnóstico de gliomas. Para incluir essas técnicas na prática clínica de forma segura são necessários 

estudos multicêntricos, modelos interpretáveis e políticas que assegurem a validação ética, reprodutibilidade e 

acessibilidade igualitária.   

Palavras-chave: Espectroscopia de Ressonância Magnética; Glioma; Inteligência Artificial.  

 

Abstract   

Introduction: Magnetic resonance imaging (MRI) is one of the main techniques used in the diagnosis of gliomas, but it 

has limitations in tumor differentiation and in predicting molecular markers. Artificial intelligence (AI) has emerged as 

a complementary tool, capable of increasing diagnostic accuracy and supporting clinical decisions. Method: A 

systematic review of articles published between 2015 and 2025 in the PubMed, MEDLINE, and SciELO databases was 

conducted. Methodological quality was assessed using the AMSTAR-2 tool. Results: DL and ML-based models showed 

promising performance, with accuracy exceeding 95% in some cases, especially convolutional neural networks (CNNs). 

Hybrid models integrating radiomic and clinical-molecular data showed better sensitivity and specificity in 

differentiating between low- and high-grade gliomas. However, limitations such as methodological heterogeneity, lack 

of standardization of imaging protocols, risk of overfitting, and lack of robust external validation still restrict large-

scale clinical application. Discussion: AI has shown promise in automating complex image analyses, reducing 

subjective biases, and offering greater diagnostic accuracy. However, challenges persist regarding the standardization 

of protocols, the difficulty of compatibility between systems, and the transparency of algorithms, which are factors that 

hinder its clinical incorporation. Conclusion: The integration of AI in MRI represents a milestone in oncological 
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neuroimaging, with great revolutionary potential in the diagnosis of gliomas. To safely include these techniques in 

clinical practice, multicenter studies, interpretable models, and policies that ensure ethical validation, reproducibility, 

and equitable accessibility are necessary.  

Keywords: Magnetic Resonance Spectroscopy; Glioma; Artificial Intelligence.  

  

Resumen   

Introducción: La resonancia magnética (RM) es una de las principales técnicas utilizadas en el diagnóstico de gliomas, 

pero presenta limitaciones en la diferenciación tumoral y en la predicción de marcadores moleculares. La inteligencia 

artificial (IA) ha emergido como una herramienta complementaria, capaz de aumentar la precisión diagnóstica y apoyar 

las decisiones clínicas. Método: Se realizó una revisión sistemática de artículos publicados entre 2015 y 2025 en las 

bases de datos PubMed, MEDLINE y SciELO. La calidad metodológica se evaluó utilizando la herramienta AMSTAR-

2. Resultados: Los modelos basados  en DL y ML mostraron un rendimiento prometedor, con una precisión superior al 

95% en algunos casos, especialmente las redes neuronales convolucionales (CNN). Los modelos híbridos que integran 

datos radiómicos y clínico-moleculares mostraron una mejor sensibilidad y especificidad para diferenciar entre gliomas 

de bajo y alto grado. Sin embargo, limitaciones como la heterogeneidad metodológica, la falta de estandarización de 

los protocolos de imagen, el riesgo de sobreajuste y la falta de una validación externa robusta aún restringen la 

aplicación clínica a gran escala. Discusión: La IA ha demostrado ser prometedora en la automatización de análisis de 

imágenes complejos, la reducción de sesgos subjetivos y la mejora de la precisión diagnóstica. Sin embargo, persisten 

desafíos en cuanto a la estandarización de protocolos, la dificultad de compatibilidad entre sistemas y la transparencia 

de los algoritmos, factores que dificultan su incorporación clínica. Conclusión: La integración de la IA en la resonancia 

magnética representa un hito en la neuroimagen oncológica, con un gran potencial revolucionario en el diagnóstico de 

gliomas. Para incorporar estas técnicas de forma segura en la práctica clínica, se requieren estudios multicéntricos, 

modelos interpretables y políticas que garanticen la validación ética, la reproducibilidad y la accesibilidad equitativa.  

Palabras clave: Espectroscopía de Resonancia Magnética; Glioma; Inteligencia Artificial.  

 

1. Introdução  

Gliomas são tumores raros infiltrativos, constituem os tumores primários mais prevalentes do sistema nervoso central  

(SNC) em seres humanos, correspondendo a aproximadamente 40%–50% de todas as neoplasias intracranianas primárias e cerca 

de 81% dos tumores cerebrais malignos.  De acordo com a Diretrizes de Tumor Cerebral no Adulto da CONITEC, os tumores 

gliais são neoplasias raras, correspondendo a cerca de 2% de todos os cânceres do Brasil, apesar de sua incidência relativamente 

baixa na população geral, essas lesões estão associadas a altos índices de morbidade e mortalidade, sendo o glioblastoma a 

variante histológica mais frequente, representando cerca de 45% dos casos. Essa forma apresenta um prognóstico particularmente 

desfavorável, com sobrevida relativa em cinco anos estimada em apenas 5% (Ostrom et al., 2014; Saúde, n.d.; Song et al., 2010). 

Os gliomas se originam das células da glia, tendo como responsabilidade nutrir e proteger os neurônios do Sistema Nervoso 

Central (SNC). Os gliomas apresentam diferentes subtipos, sendo o mais comum os derivados dos astrócitos denominado 

astrocitoma, porém não o mais agressivo. Esses tumores variam em graus de agressividade, sendo o glioblastoma o mais 

agressivo e letal classificado como grau IV de acordo com a Organização Mundial da Saúde (OMS) (Saúde, n.d.) Pela sua alta 

capacidade infiltrativa e mortalidade é possível explicar as dificuldades e limitações nos diagnósticos até os dias de hoje (Dra 

Suzana Maria Fleury Malheiros Co-orientador & José da Rocha, 2005). A OMS classifica os gliomas em quatro graus: sendo o 

de baixo grau (I e II) e alto grau (III e IV), sendo o glioblastoma (grau IV) o mais agressivo. Na contemporaneidade as 

classificações segundo a OMS incluem critérios moleculares (Saúde, n.d.). 

Embora o diagnóstico definitivo exija confirmação histopatológica, diretrizes nacionais recomendam que a avaliação 

inicial inclua exames de neuroimagem como tomografia computadorizada (TC), que permite a identificação de massas 

expansivas e a exclusão de hemorragias intracranianas. Uma vez detectada a presença de uma lesão, solicita-se a realização de 

uma ressonância magnética (RM) convencional com contraste, exame que fornece informações detalhadas sobre o volume 

tumoral, o desvio das estruturas da linha média, a compressão de tecidos adjacentes e a presença de edema peritumoral. Além 

disso, a RM é fundamental no planejamento do tratamento inicial, geralmente a ressecção cirúrgica (debulking). Com base nas 

imagens obtidas, o neurocirurgião pode avaliar a delimitação da área afetada, o grau de agressividade do tumor e o risco potencial 
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de toxicidade em regiões funcionais próximas, o que contribui para uma abordagem mais segura e eficaz (Shukla et al., 2017) 

Como citado, a RM convencional é solicitada no início da descoberta da doença, Apesar dos avanços significativos, ainda se faz 

presente limitações relevantes a complexidade biológica e heterogeneidade entre os diferentes subtipos de glioma, especialmente 

no que diz respeito à previsão de características moleculares e genômicas, nesse contexto, a classificação proposta pela 

Organização Mundial da Saúde (OMS) em 2016 passou a integrar marcadores moleculares essenciais ao diagnóstico, 

complementando os critérios histopatológicos tradicionais. Destacam-se, entre esses marcadores, as mutações no gene da 

isocitrato desidrogenase (IDH) e a codeleção dos braços cromossômicos 1p/19q, parâmetros fundamentais para a estratificação 

clínica e prognóstica desses tumores. Estudos demonstram que a presença de mutações em IDH está associada a um curso clínico 

mais indolente e a maior resposta à quimioterapia, enquanto a codeleção 1p/19q correlaciona-se com desfechos mais favoráveis 

e sobrevida prolongada (Bonm et al., 2020; Tomás & Pojo, 2025). Além desses obstáculos técnicos e clínicos, também 

permanecem em evidência desafios relacionados à segurança da informação, à proteção da privacidade dos dados dos pacientes, 

à validação e confiabilidade dos algoritmos, aspectos regulatórios, éticos e legais, que devem ser cuidadosamente avaliados para 

a integração segura e eficaz da IA na prática médica (Xu et al., 2022). 

Apesar dos avanços na neuroimagem e na caracterização molecular, persistem desafios significativos. A 

heterogeneidade biológica entre os subtipos de glioma dificulta a previsão precisa de características genômicas e moleculares 

apenas com base em imagens convencionais. Nesse cenário, a inteligência artificial (IA) emerge como uma ferramenta 

estratégica capaz de processar grandes quantidades de dados extraídos RM e identificar informações relevantes para o 

direcionamento terapêutico e reduz notoriamente a sobrecarga dos profissionais de saúde envolvidos nesses casos. Desde os 

primeiros conceitos propostos por Alan Turing (1950) e formalizados por John McCarthy como “a ciência e engenharia de 

máquinas inteligentes”, a IA evoluiu para um campo dinâmico capaz de aprender com grandes volumes de dados, aprimorar 

continuamente seu desempenho e apoiar decisões clínicas sem intervenção humana direta. A RM, por ser uma técnica não 

invasiva, tem se consolidado como método padrão na avaliação de gliomas. Diferentes sequências na RM oferecem dados 

estruturais, funcionais e metabólicos fundamentais para compreender a biologia tumoral. Com o apoio da inteligência artificial, 

esses dados podem ser analisados de forma mais precisa e personalizada. Na neuro-oncologia, algoritmos de aprendizado de 

máquina (ML) — como Randon Forest  (RF) e máquinas de vetores de suporte (SVM)  — têm sido aplicados para identificar 

fatores prognósticos, refinar diagnósticos e prever respostas terapêuticas com base em perfis genéticos. O aprendizado profundo 

(Deep learning, DL), por sua vez, supera limitações do ML tradicional ao automatizar a extração de padrões complexos em 

grandes conjuntos de imagens. Associado à radiômica (que converte imagens médicas em dados quantitativos), o DL permite 

inferir características moleculares não invasivamente, auxiliar no prognóstico e orientar terapias personalizadas. Contudo, sua 

integração na prática médica enfrenta obstáculos técnicos, éticos e regulatórios, incluindo a necessidade de validação robusta 

dos algoritmos, garantia da privacidade dos dados dos pacientes, transparência nos processos decisórios e conformidade com 

normas legais e éticas. (Luo et al., 2023; Mehmandoost et al., 2024; Xu et al., 2022). 

Diante desse contexto, o objetivo do artigo é analisar o uso de técnicas de machine learning (ML), deep learning (DL) 

e radiômica aplicadas à RM para diagnóstico e prognóstico de gliomas, destacando potencialidades e limitações metodológicas.  

 

2. Metodologia  

Realizou-se uma investigação documental de fonte indireta em artigos da literatura (Snyder, 2019), num estudo de 

natureza quantitativa em relação à quantidade de 9 (Nove) artigos selecionados para compor o “corpus” desta pesquisa é, de 

natureza qualitativa em relação às discussões realizadas sobre os artigos selecionados (Soares et al., n.d.) num estudo de revisão 

sistemativa integrativa (Editorial revisão integrativa de pesquisa na enfermagem o rigor cientifico que lhe é exigido, n.d.)  

O presente estudo foi delineado como uma revisão sistemática da literatura, conduzida de acordo com as  
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recomendações do protocolo PRISMA (Preferred Reporting Items for Systematic Reviews and Meta - Analyses), visando 

garantir transparência, rigor metodológico e reprodutibilidade.   

  

2.1 Estratégia de Busca  

A busca bibliográfica foi realizada em maio de 2025 nas bases de dados PubMed, MEDLINE e Biblioteca Virtual em 

Saúde (BVS/SciELO). Dois revisores independentes executaram a triagem inicial, e um terceiro revisor foi consultado em casos 

de discordância, foram considerados elegíveis estudos publicados entre 2015 e 2025 (últimos 10 anos), redigidos em inglês, 

espanhol ou português.  

Foram utilizados descritores controlados (MeSH e Decs) e não controlados, combinados por operadores booleanos.  

As strings de busca completos incluíram por exemplo:  

  

PubMED/MEDLINE  

(“magnetic Resonance” OR “MRI spectroscopy” OR "Magnetic Resonance Spectroscopy”) AND (glioma) AND 

(“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning”)  

  

  BVS/SciELO  

(“Ressonância Magnética” OR “Espectroscopia de Ressonância Magnética”) AND (glioma) AND (“Inteligência 

Artificial” OR  

“Aprendizado de Máquina”)  

 

2.2 Critérios de Inclusão e Exclusão  

A seleção dos artigos foi norteada pelo modelo PICOS (População, Intervenção, Comparação, Desfecho, Desenho do 

Estudo) Tabela 1.   

 

Tabela 1 - Estratégia Pico utilizada na Revisão. 

População (P) Pacientes com diagnósticos de gliomas  

Intervenção (I) Aplicação de Técnicas de Inteligência artificial (IA) em exames de Ressonância magnética (RM)  

Comparação (C) Estudos comparando o desempenho da IA com diagnósticos convencionais, ou entre diferentes 

modelos de IA.  

Desfecho (O) Desempenho diagnóstico utilizando a IA, por meio de métricas como acurácia, sensibilidade, 

especificidade.  

Desenho do Estudo (S) Estudos de revisão, publicados em artigos completos  

Fonte: Elaborado pelos Autores. 

 

Foram considerados elegíveis para inclusão os estudos que envolvessem pacientes com diagnóstico confirmado de 

glioma, que aplicassem técnicas de inteligência artificial (IA) na análise de exames de ressonância magnética (RM), e que 

comparassem o desempenho de algoritmos de IA entre si ou em relação a métodos diagnósticos convencionais. Adicionalmente, 

exigiu-se que os trabalhos apresentassem relatos claros de métricas de desempenho, tais como acurácia, sensibilidade, 

especificidade e área sob a curva ROC (AUC).  
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Foram excluídos estudos conduzidos in vitro ou em modelos animais, bem como relatos de caso, editoriais, artigos de 

opinião, resumos de congressos e publicações redigidas em idiomas distintos daqueles previamente definidos. Também foram 

descartados artigos cuja metodologia não foi descrita de forma suficientemente clara para permitir a avaliação crítica de seus 

procedimentos e resultados.  

  

2.3 Processo de seleção dos estudos   

A busca nas bases de dados resultou em 520 registros relevantes. Após a remoção de 4 duplicatas, foram avaliados 516 

artigos baseando-se em títulos. Nessa etapa foram excluídos no total 382 artigos. Na etapa de elegibilidade foram avaliados 138 

estudos sendo 75 excluídos após a leitura dos resumos e 54 excluídos após a leitura do texto completo, totalizando em 129 artigos 

excluídos nesta etapa. Ao final, 9 estudos preencheram os critérios de elegibilidade e foram incluídos na síntese qualitativa. O 

processo de triagem e seleção está representado no fluxograma PRISMA (Figura 1).  

 

Figura 1 - Fluxograma PRISMA. 

 

Fonte: Elaborado pelos Autores. 

 

2.4 Avaliação da qualidade   

Dois revisores A.S e G.F realizaram de forma independente a avaliação de elegibilidade dos resultados da pesquisa, a  

qualidade metodológica dos estudos selecionados foi avaliada pelos mesmos revisores, utilizando a ferramenta AMSTAR-2 

(Assessing the Methodological Quality of Systematic Reviews). Foram considerados sete domínios críticos: (I) registro de 

protocolo, (II) adequação da estratégia de busca, (III) avaliação do risco de viés, (IV) métodos estatísticos, (V) consideração de 

vieses nos resultados, (VI) avaliação de viés de publicação e (VII) confiança global da evidência. Cada item foi classificado 

como “SIM”, “NÃO” e “N/A”, e os estudos foram classificados quanto ao risco de viés global como: baixo, moderado, alto ou 

crítico com base nos critérios do AMSTAR-2   
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 2.5 Registro de Protocolo  

O protocolo desta revisão não foi registrado em plataformas específicas, como o PROSPERO, o que representa uma 

limitação metodológica. Entretanto, todas as etapas foram descritas de forma transparente, visando reduzir potenciais vieses.   

Por se tratar de revisão baseada em dados secundários, não houve necessidade de aprovação por comitê de ética, mas  

foram seguidas diretrizes éticas para garantir transparência e confiabilidade.  

 

3. Resultados e Discussão  

A avaliação da qualidade metodológica dos estudos incluídos, realizada por meio da ferramenta AMSTAR-2, 

evidenciou uma heterogeneidade significativa nos padrões metodológicos. Apenas um estudo (5,9%) foi classificado como de 

alta confiança, enquanto sete (41,2%) apresentaram confiança moderada e outros sete (41,2%) foram considerados de baixa 

confiança. Dois estudos (11,7%) foram classificados como tendo confiança criticamente baixa. Os principais pontos de 

fragilidade observados incluíram a ausência de registro prévio de protocolo, lacunas na avaliação do risco de viés dos estudos 

primários e inconsistências na aplicação dos métodos estatísticos, conforme detalhado na Tabela 2. 

 

Tabela 2 - Resumo da avaliação da ferramenta amstar-2 da literatura selecionada. 

Autor (Ano) Protocolo 

registrado? 

(Item 2) 

Estratégia de 

busca 

adequada? 

(Item 4) 

Avaliação 

risco de viés? 

(Item 9) 

Métodos 

estatísticos 

corretos? 

(Item 11) 

Considerou 

viés nos 

resultados? 

(Item 13) 

Viés de 

publicação 

avaliado? 

(Item 15) 

Nível de Confiança 

(Alta / Moderada / 

Baixa / 

Criticamente baixa) 

Maria et.al 

(2024)  

Não Sim Sim Sim Parcial Sim Moderado 

Ayman S 

Alhasan  

(2021)  

Sim Parcial Sim N/A Sim  Não Moderado 

Ayman S 

Alhasan (2021)  

Sim Parcial Sim N/A Sim  Não Moderado 

Kempen et.al 

(2021)  

Sim Parcial Sim Sim Sim Sim Alta 

Chilaca-Rosas 

et.al  

(2025) 7 

Não Parcial Sim Sim Sim Sim Moderado 

Farahani et.al 

(2025)  

Não Sim Sim Sim Sim Sim Moderado 

Sohn et.al 

(2020)  

Não Parcial Sim Parcial Sim Sim Moderado 

Wang et.al 

(2023) 

Não Sim Sim Sim Sim Sim Moderado  

Al-Rumaihi et.al 

(2025) 

Não Sim Sim Sim Sim SIm Moderado 

Chen et.al  

(2024) 

Sim Sim Sim Sim Sim Sim Alto  

Fonte: Elaborado pelos Autores. 

 

3.1 Características dos estudos incluídos  

Os 9 estudos analisados abrangeram diferentes técnicas de IA aplicadas à RM no diagnóstico de gliomas, incluindo 

CNNs, máquinas de vetor de suporte (SVMs), Random Forest (RF), DL e abordagens de radiômica. A maioria dos artigos  

avaliou desempenho diagnóstico para diferenciação de gliomas de baixo (LGG) e alto grau (HGG), bem como a previsão 

de marcadores moleculares.  

Uma tabela padronizada foi desenvolvida para extração de dados, os seguintes dados foram retirados de cada estudo 

incluído por dois revisores de forma independente. Autor (Ano), Tipo de Estudo, Objetivo do Estudo, Técnicas de IA utilizadas 

e Resultados. Tabela 3 
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Tabela 3 - Resumo dos Resultados avaliados nos estudos revisados. 

Autor (Ano) Tipo de 

Estudo 

Objetivo Técnicas de IA Resultados 

Maria et.al 

(2024) 

Revisão 

Sistemática 

Avaliar desempenho diagnóstico 

da radiômica baseada em RM para 

classificação de gliomas. 

RF 

SVM 

SVM e RF tiveram desempenho 

superior aos métodos estatístico 

tradicionais. ótima capacidade de 

distinguir HGG de LGG mas risco de 

confundir LGG com HGG. 

Ayman S 

Alhasan  

(2021) 

Revisão 

Sistemática 

Avaliar modelos de DL na 

classificação de gliomas por RM 

CCNs, Redes Neurais 

profundas recorrentes 

(RNNs), Redes Neurais 

auto codificadoras (DA), 

Redes Neurais de crenças 

Profundas (DBN) 

CNNs (um dos modelos de DP) 

modelo mais eficaz mostrado nos 

estudos, no processo de 

amadurecimento para ser usada nos 

diagnósticos e tratamento de gliomas 

van Kempen et 

al.  

(2021) 

Revisão 

Sistemática 

Avaliar o desempenho de 

algoritmos de ML na segmentação 

de gliomas em RM 

ML Acurácia boa, porém alta 

heterogeneidade diferença nos 

pacientes, nas imagens, equipamentos 

e dos algoritmos 

Chilaca-Rosas 

et.al  

(2025) 

Revisão 

Sistemática 

Avaliar a integração de IA e 

radiômica para prever a progressão 

de gliomas de alto grau e aprimorar 

o manejo clínico 

SVM e RF SVM e RF alto desempenho com até 

98% AUC e 98,7% de acurácia. 

Farahani et al. 

(2025) 

Revisão 

Sistemática 

Avaliar a precisão diagnóstica de 

modelos de DL na previsão de 

marcadores moleculares de glioma 

utilizando RM 

CNNs, Redes Neurais 

Profundas (DNN's), 

SVMs e RF 

DL apresenta resultados significativos 

na previsão de marcadores 

moleculares do glioma, porém 

desafiada pela heterogeneidade de 

dados, limitações operacionais e 

barreiras regulatórias. 

Sohn et.al 

(2020) 

Revisão 

Sistemática 

Estimar precisão diagnóstica da 

radiomia baseada ML na 

diferenciação de gliomas e 

identificar possíveis variáveis que 

afetam precisão diagnóstica 

Radiômica combinada 

com ML. 

A combinação da radiomica com ML 

para diagnósticos e na diferenciação de 

HGG e LGG teve um ótimo 

desempenho. 

Chen et.al 

(2024) 

Revisão 

Sistemática 

Avaliar a acurácia de modelos 

radiômicos baseados em 

aprendizado de máquina para 

prever mutações IDH em gliomas e 

avaliar a qualidade metodológica 

dos estudos 

SVM, RF Modelos de ML superaram DL, LGG  

com sensibilidade maior, HGG com 

especificidade maior e radiômica 

combinada com dados clínicos 

melhora a sensibilidade. 

Al-Rumaihi 

(2025) 

Revisão 

Sistemática 

examinar e comparar a aplicação 

de diferentes técnicas de IA para 

diagnósticos de vários tipos de 

tumores cerebrais através da RM. 

CNN’s,SVM, Técnicas de CNN’s com alta precisão 

de na classificação dos tipos de 

tumores, heterogeneidade continua 

sendo um problema é necessária uma 

padronização sendo o desafio atual. 

Wang et.al 

(2023) 

Revisão 

Sistemática 

Examinar o valor diagnóstico da 

radiômica aplicada a ressonância 

magnética na diferenciação de 

gliomas HGG e LGG. 

Radiômica Radiômica é uma técnica precisa para 

a diferenciação dos gliomas, porém 

ainda enfrenta desafios. 

Fonte: Elaborado pelos Autores. 

 

Os estudos demonstraram um foco significativo na integração da inteligência Artificial, Aprendizado de máquina (ML) 

e Aprendizado Profundo com a Radiômica (AIR) para aprimorar o diagnóstico, prognóstico e manejo de gliomas, que são 

tumores agressivos do sistema nervoso central. Todos os estudos ressaltam a importância de métodos não invasivos para avaliar 

esses tumores, visto que a biópsia, embora seja o padrão ouro, apresenta riscos e limitações. 

 

3.2 Classificação e Graduação de gliomas  

Os modelos de IA demonstram elevada acurácia na diferenciação de gliomas de alto grau (HGG) e baixo grau (LGG). 

Dos resultados encontrados, a sensibilidade agrupada para diagnosticar HGG teve um resultado de 96%. A 

especificidade para diagnosticar LGG teve um resultado mais baixo de 90%. No entanto, a diferenciação do grau 4 e do grau 3 

http://dx.doi.org/10.33448/rsd-v15i1.50182
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http://et.al/
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do glioma da OMS apresentou desempenho ligeiramente inferior (sensibilidade de 89%, especificidade de 81%) (Chilaca-Rosas 

et al., 2025; Sohn & Bisdas, 2020).  

Sobre a previsão de marcadores moleculares, esta é uma área de pesquisa em rápido crescimento, com modelos de 

DL/ML sendo usados para prever o status de mutações genéticas importantes, que tradicionalmente exigem procedimentos 

invasivos. Em relação a mutações mais recentes de interesse clínico, como ATRX e TERT, os estudos reportam sensibilidade e 

especificidade agrupadas de 0,79/0,85 para ATRX e 0,81/0,70 para TERT, respectivamente (Farahani et al., 2025) 

Na segmentação tumoral, algoritmos de aprendizado de máquina em especial CNNs (redes neurais convolucionais), 

apresentaram desempenho consistente, com coeficientes de DICE (DSC) médio de 0,84 mostrando resultados semelhantes entre 

gliomas de alto grau (HGG) e baixo grau (LGG) (van Kempen et al., 2021) 

Por fim, a integração de IA e radiômica também foi aplicada à predição de sobrevida global (OS) e sobrevida livre de 

progressão (PFS). Alguns modelos como SVM e RF alcançaram desempenho notável, com AUC de até 98% e acurácia de 98,7% 

(Chilaca-Rosas et al., 2025). O avanço da DL tem se consolidado como marco na análise de imagens médicas, sobretudo por 

meio das CNNs, essa abordagem tornou-se predominante devido à sua capacidade de processar dados brutos de RM, oferecendo 

ganhos significativos na caracterização e interpretação das imagens (Alhasan, 2021). Paralelamente, os algoritmos de ML como 

SVM e RF, continuam a se destacar como ferramentas de alto desempenho, principalmente em tarefas relacionadas à graduação 

de gliomas e à predição de OS e PFS a partir dos resultados de AUC e acurácia como foram citados (Chilaca-Rosas et al., 2025). 

Mas recentemente, observa-se uma tendência crescente para o desenvolvimento de modelos híbridos que integram 

características radiômicas e de DL, bem como o uso de estratégias de Ensemble. Esses modelos têm demonstrado desempenho 

robusto, com alta acurácia e estabilidade, alcançado, por exemplo, 95,28% de acurácia na segmentação de gliomas (Al-Rumaihi 

et al., 2025) 

As características radiômicas de primeira e segunda ordem têm se mostrado amplamente preditivas para a graduação e 

caracterização dos gliomas. Essas variáveis permitem captar aspectos relacionados a heterogeneidade tumoral, distribuição 

espacial e padrões de textura que não são perceptíveis na análise visual convencional de imagens (Chilaca-Rosas et al., 2025). 

Entre as características de segunda ordem se destaca Gray Level Co-occurrence Matrix (GLCM), Gray Level 

Dependence Matrix (GLDM), Neighboring Gray-Tone Difference Matrix (NGTDM), Gray Level Run Length Matrix (GLRLM), 

Gray Level Size Zone Matrix (GLSZM). Segundo a autora Chilaca et.al tais descritores de textura foram empregados em 68% 

dos estudos revisado, demonstrando alta capacidade de prever a diferenciação e caracterização dos gliomas, por meio de análises 

das relações espaciais entre os voxels na região de interesse (Chilaca-Rosas et al., 2025). 

As características da primeira ordem, como Kurtose, energia de área necrótica e desvio padrão de intensidade, 

associados a atributos de forma, volume e variáveis clínicas e moleculares (exemplos: idade, mutações em IDH e metilação do 

promotor de MGMT), também apresentaram relevância prognóstica, sendo associadas à prognosticar a OS e PFS (Chilaca-Rosas 

et al., 2025). Além disso, parâmetros derivados da difusão, como ADC (coeficiente de difusão aparente), demonstraram utilidade 

na classificação de gliomas LGG (Sohn & Bisdas, 2020). A integração de dados radiômicos com informações clínicas e 

moleculares mostrou-se uma estratégia eficaz para aprimorar a acurácia preditiva e reduzir vieses, favorecendo a detecção 

precoce de progressão tumoral, porém não foram todos os estudos que incluíram. De fato, aproximadamente 58% dos estudos 

analisados incorporam dados moleculares, como mutações e alterações genéticas, em seus modelos de predição (Chilaca-Rosas 

et al., 2025).  

As classificações da OMS de 2016 e 2021 reforçam a importância de biomarcadores moleculares, incluindo os 

principais marcadores IDH, 1p/19q e os demais por exemplo ATRX, TERT, TP53.CDKN2A/B, EGFR. Ki-67, SYP, como 

elementos fundamentais para diagnósticos, definição prognóstica e escolha terapêutica nos gliomas (De Maria et al., 2024; 

Farahani et al., 2025; Saúde, n.d.)  

http://dx.doi.org/10.33448/rsd-v15i1.50182
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3.3 Uso de imagens multimodais 

A ressonância magnética (RM) permanece como o padrão-ouro para a visualização tumoral e avaliação da resposta 

terapêutica em pacientes com gliomas. Técnicas avançadas, como a perfusão (PWI) e a difusão (DWI), têm ampliado a 

compreensão da biologia tumoral, oferecendo informações complementares sobre vascularização, densidade celular e 

microambiente do tumor (Chilaca-Rosas et al., 2025). A relevância da RM decorre de sua aplicabilidade clínica consolidada, 

além da capacidade de capturar múltiplos aspectos da morfologia e da fisiopatologia tumoral em diferentes sequências (Farahani 

et al., 2025). As sequências de RM mais frequentemente recomendadas incluem T1-weighted (T1W), T1 com contraste (CE-

T1WI), T2-weighted (T2W) e FLAIR, sendo estas últimas, em especial CE-T1WI, T1 e FLAIR, consideradas essenciais para a 

segmentação automática de gliomas (Chilaca-Rosas et al., 2025). 

 Estudos baseados em imagens multimodais demonstraram maior especificidade na diferenciação entre gliomas LGG e 

HGG (Sohn & Bisdas, 2020). Ademais, a sequência CE-T1W foi a mais frequentemente utilizada em modelos de DL para a 

predição de marcadores moleculares, ressaltando sua importância na integração de imagem e genômica (Farahani et al., 2025). 

Apesar dos avanços, ainda persiste uma falta de consenso quanto aos protocolos ideais de aquisição de imagens, às 

metodologias de segmentação e à interpretabilidade dos modelos de inteligência artificial, fatores que comprometem a 

reprodutibilidade e a aplicação clínica em larga escala. Dessa forma, torna-se imperativo o estabelecimento de diretrizes 

padronizadas que norteiam a aquisição, o processamento e a análise radiômica, bem como a validação multicêntrica dos modelos. 

A proposta de um roteiro estruturado para o desenvolvimento de modelos AIRI (Artificial Intelligence Radiomics Inter-field) 

tem sido apontada como uma estratégia promissora para reduzir vieses e garantir a comparabilidade entre os estudos (Chilaca-

Rosas et al., 2025). 

Há padronização em todas as etapas do processo (incluindo aquisição das imagens, segmentação, engenharia de 

características, análises estatísticas e estruturação de relatórios) representa um passo fundamental para promover a generalização 

e a confiabilidade dos estudos radiômicos baseados em ML (Sohn & Bisdas, 2020). Ainda assim, a heterogeneidade 

metodológica permanece como uma das principais limitações, abrangendo variações nos protocolos de imagem, nas técnicas de 

segmentação e nas estratégias de seleção de características. Esses aspectos reforçam a necessidade de adotar estruturas AIRI 

consolidadas e padronizadas, a fim de melhorar tanto a comparabilidade dos achados quanto sua aplicabilidade translacional 

(Chilaca-Rosas et al., 2025). 

Segundo a literatura que aponta significativa heterogeneidade nos estudos atuais, refletida em métricas e indicadores de 

desempenho diversos, o que dificulta a integração e comparação dos resultados (Chilaca-Rosas et al., 2025). Essa variação está 

relacionada a múltiplos fatores, como diferenças nos protocolos de aquisição de imagens, metodologias de segmentação, técnicas 

de extração de características e métodos de validação (Farahani et al., 2025). Além disso, discrepâncias em protocolos de RM, 

técnicas de pré-processamento e tipos de hardware utilizados entre centros tornam a padronização ainda mais desafiadora (Al-

Rumaihi et al., 2025). 

Outro desafio crítico é a reprodutibilidade dos resultados, frequentemente comprometida pela ausência de padronização 

na extração de características e na validação dos modelos (Chilaca-Rosas et al., 2025). Estudos de avaliação de qualidade, como 

o QUADS-2, identificaram vieses em múltiplas etapas do processo, além de preocupações com a aplicabilidade clínica em 

contextos de validação externa (Farahani et al., 2025; Wang et al., 2023). 

Grande parte dos trabalhos apresenta delineamento retrospectivo, no qual os desfechos dos pacientes já são conhecidos, 

acarretando risco elevado de viés de seleção. O uso de bases públicas de dados, embora facilite o acesso e reuso científico, 

também pode introduzir vieses adicionais, uma vez que nem todos os fatores relacionados à aquisição das imagens podem ser 

controlados (Sohn & Bisdas, 2020). 
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Os modelos DL frequentemente se mostram suscetíveis ao overfitting (fenômeno que ocorre quando um modelo de 

aprendizado aprende os dados de um treinamento de uma forma excessivamente detalhadas, sendo difícil a generalização para 

novos dados), especialmente quando a seleção de características é realizada em dados também utilizados para teste em validação 

cruzada (Chilaca-Rosas et al., 2025). Estratégias de redução dimensional e seleção criteriosa de variáveis têm sido recomendadas 

para mitigar esse problema e aumentar a robustez dos modelos (Sohn & Bisdas, 2020). Ademais, a homogeneidade de conjuntos 

de dados públicos, como a segmentação do tumor, pode exacerbar o risco de overfitting e limitar a capacidade de generalização 

(Al-Rumaihi et al., 2025). 

Grande parte dos estudos não contempla validação externa ou a utilização de conjuntos de teste independentes, etapa 

crucial para avaliar a robustez e generalização dos modelos em cenários do mundo real  (Al-Rumaihi et al., 2025; Chilaca-Rosas 

et al., 2025; Farahani et al., 2025; van Kempen et al., 2021). Quando presente, a validação externa tende a revelar desempenho 

inferior em termos de sensibilidade e especificidade, em comparação à validação interna (Chen et al., 2024). 

O tamanho amostral reduzido e o desequilíbrio entre gliomas de baixo e alto grau comprometem a separação adequada 

entre conjuntos de validação e teste, além de aumentar o risco de overfitting (Al-Rumaihi et al., 2025; Sohn & Bisdas, 2020). 

Nesse contexto, modelos baseados em DL frequentemente apresentam desempenho inferior em conjuntos reduzidos de dados, 

quando comparados aos modelos tradicionais de ML (Chen et al., 2024). Torna-se, portanto, imprescindível a criação de bases 

de dados mais amplas e diversificadas (Al-Rumaihi et al., 2025). 

A ausência de clareza e padronização nos relatórios metodológicos também representa um obstáculo. Muitas vezes, os 

resultados são apresentados de forma aglomerada ou com abreviações não padronizadas, comprometendo a transparência e a 

reprodutibilidade (Al-Rumaihi et al., 2025; Chilaca-Rosas et al., 2025).  Apesar do grande potencial, a tradução dos modelos 

desenvolvidos em pesquisa para a prática clínica ainda encontra barreiras significativas, principalmente relacionadas à falta de 

padronização, à escassez de validação robusta e à dificuldade em reproduzir resultados (De Maria et al., 2024). Até o momento, 

a implementação clínica em larga escala permanece limitada (van Kempen et al., 2021).  

As constantes atualizações nas classificações da OMS para tumores do sistema nervoso central, como as transições de 

2016 para 2021, podem gerar um desvio de dados, resultando em perda de precisão de modelos treinados com critérios antigos. 

Assim, a atualização periódica e readequação dos modelos torna-se fundamental para manter sua validade clínica (De Maria et 

al., 2024). 

A natureza de “caixa-preta” dos modelos DL ainda constitui um desafio relevante, uma vez que o processo interno de 

tomada de decisão não é transparente. Essa limitação compromete a confiança do clínico e a responsabilização em casos de erros 

diagnósticos (Al-Rumaihi et al., 2025; Farahani et al., 2025). Em particular, a baixa interpretabilidade das CNN’s pode reduzir 

a aceitação clínica, sobretudo em situações de falsos negativos (Al-Rumaihi et al., 2025). 

É prioritária a realização de estudos prospectivos com amostras amplas e diversas, capazes de gerar modelos de IA mais 

generalizáveis e validados em diferentes populações (Al-Rumaihi et al., 2025; Chen et al., 2024). Além disso, avaliações 

rigorosas dos protocolos de ML e DL são fundamentais para reduzir vieses e consolidar a robustez das evidências (Alhasan, 

2021). A implementação de roteiros universais e diretrizes padronizadas para o desenvolvimento de modelos AIRI (incluindo 

aquisição de dados, pré-processamento, segmentação e extração de características) é uma necessidade urgente (Chilaca-Rosas et 

al., 2025; Sohn & Bisdas, 2020). A harmonização de dados, sobretudo em iniciativas de ciência aberta, permitirá maximizar o 

potencial das bases públicas e fortalecer a confiabilidade das análises radiômicas (Saúde, n.d.; van Kempen et al., 2021). 

A combinação de informações clínicas e moleculares (como idade, status funcional, IDH e MGMT) com dados de 

imagem avançados tem se mostrado uma estratégia promissora para aumentar o desempenho e a acurácia dos modelos preditivos 

(Al-Rumaihi et al., 2025; Chilaca-Rosas et al., 2025; Sohn & Bisdas, 2020). A disponibilização de algoritmos, códigos e dados 

em acesso aberto deve ser incentivada, a fim de fomentar a colaboração interdisciplinar e acelerar o avanço do campo  (Alhasan, 
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2021; Chilaca-Rosas et al., 2025; van Kempen et al., 2021). Iniciativas de compartilhamento de dados e o desenvolvimento de 

plataformas colaborativas internacionais são essenciais para o fortalecimento da pesquisa global em radiômica aplicada aos 

gliomas (Chilaca-Rosas et al., 2025). 

No diagnóstico de gliomas, a RM (Ressonância Magnética) com a aplicação da IA (Inteligência Artificial), oferece em 

termos de acurácia, eficiência diagnóstica e prognóstico. Por meio das ponderações/sequências T1, T2, FLAIR e contraste com 

gadolínio, que são métodos convencionais para a patologia em questão (Saúde, n.d.) No entanto, há limitações devido às 

diferenciações de gliomas, alto ou baixo grau, seja na ausência de saturação pelo contraste (Alhasan, 2021). 

Os métodos baseados em IA, têm demonstrado maior sensibilidade e especificidade na constatação de arquétipos sutis 

e variedades intratumorais que não são evidentes à análise radiológica convencional. Através de aspectos quantitativos por meio 

de radiômica, favorecendo a classificação tumoral e, em alguns casos, o indicador de marcadores moleculares, como IDH e 

1p/19q (Chilaca-Rosas et al., 2025; van Kempen et al., 2021). 

O engajamento da IA nesses métodos permite mecanizar e uniformizar a análise, diminuindo a variedade da 

repetibilidade das observações e aumentando a autenticidade dos laudos, com isso, corrobora a importância dos métodos 

avançados de imagens, como RM funcional, espectroscopia e perfusão  (Alhasan, 2021; Farahani et al., 2025). 

Apesar dos avanços significativos, há limitações nesses métodos, que precisam de softwares com grandes bancos de 

dados e rotulagens para essa padronização de diagnóstico em questão, sendo assim, uma incitação tanto técnica quanto ética, 

visando a confidencialidade dos pacientes. Nesse conceito, há restrições na disseminação dos padrões de IA, uma vez que 

sequências de instruções(algoritmos) exibem um ato curto quando empregados em populações ou variedade de equipamentos 

usados em prática  (Farahani et al., 2025; van Kempen et al., 2021). 

A CONITEC (2020), apesar das altas taxas de acurácia reportadas (até 98%), não reconhece formalmente ferramentas 

respaldadas em IA como elemento de normas clínicas para tumores cerebrais, ponderando um intervalo entre o avanço científico 

e o engajamento no sistema público de saúde (De Maria et al., 2024). A inclusão dessas tecnologias requer, além de indícios 

concretos de custo-efetividade, políticas públicas que rege o uso com segurança e equidade. O uso da IA e RM para diagnóstico 

de gliomas, há uma controvérsia entre, a competência para transformar diagnóstico neuro-oncológico; e a comprovação clínica, 

prescrição e infraestrutura para sua consumação (Chilaca-Rosas et al., 2025). Seja para combinação de acréscimo de soluções 

híbridas, e automatizadas e aptidão médica, podendo representar um meio viável no curto prazo, enquanto a ciência prossegue 

para ultrapassar os desafios presentes. 

Um avanço tecnológico com o uso da IA, representa um salto qualitativo no prognóstico e identificação de gliomas na 

RM, sendo uma ferramenta para favorecer o trabalho clínico - mesmo com limitações, torna-se uma grande aliada para fins de 

tratamento e soluções mais concretas para o paciente  (Chilaca-Rosas et al., 2025; van Kempen et al., 2021)  

 

4. Conclusão  

A inteligência artificial aplicada à ressonância magnética representa um avanço significativo no diagnóstico e 

prognóstico de gliomas, com desempenho superior ao da análise radiológica convencional em diversos cenários. Técnicas como 

DL, ML e radiômica demonstraram alta acurácia na diferenciação de gliomas de baixo e alto grau, além da capacidade de prever 

mutações genéticas relevantes, como IDH e 1p/19q. Modelos híbridos, que combinam imagens multimodais com dados clínicos 

e moleculares, surgem como a estratégia mais promissora, com taxas de acurácia superiores a 95%. Apesar desses progressos, 

desafios importantes persistem: a heterogeneidade dos protocolos de aquisição de imagens, a falta de padronização nos métodos 

analíticos, a escassez de validação externa e questões éticas e regulatórias. No contexto brasileiro, a ausência de reconhecimento 

formal pela CONITEC e a necessidade de comprovação de custo-efetividade reforçam a lacuna entre pesquisa e implementação 

clínica. 
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Portanto, embora os resultados atuais reforcem o potencial transformador da IA como ferramenta diagnóstica, sua 

consolidação na prática clínica exige diretrizes internacionais padronizadas, estudos multicêntricos robustos e integração com 

políticas públicas de saúde. A médio prazo, a IA tende a se consolidar como suporte essencial ao diagnóstico neuro-oncológico, 

favorecendo decisões terapêuticas mais seguras e personalizadas. 
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