Potencial antimicrobiano de hongos filamentosos utilizando sustratos renovables

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33958

Palabras clave:

Bioprospección; Hongos filamentosos; Metabolitos; Actividad antimicrobiana; Residuos agroindustriales.

Resumen

La bioprospección de metabolitos secundarios con acción antimicrobiana producidos por hongos filamentosos aislados de diversos ecosistemas y cultivados en residuos agroindustriales es de gran importancia, ya que compatibiliza el descubrimiento de nuevos agentes antimicrobianos con la reducción de impactos ambientales y la agregación de valor económico a los residuos. La presente trabajo investigó el potencial de producción de metabolitos antimicrobianos por 15 hongos filamentosos cultivados en medios alternativos a base de residuos agroindustriales de maíz, manipueira y glicerol en diferentes combinaciones. De los 15 hongos filamentosos analizados en la selección preliminar, Paecilomyces variotii UCP 0334, Aspergillus flavus UCP 0316, Aspergillus foetidus UCP 0360, Aspergillus niger UCP 1064 e Aspergillus sp. 74M4 mostraron actividad antibacteriana contra todas las bacterias probadas. Después de la fermentación sumergida en medios que contienen maíz, manipueira y glicerol, P. variotii UCP 0334 mostró la mayor actividad y espectro de acción al exhibir los mayores halos (de 7 a 28 mm de diámetro) de inhibición contra todas las bacterias Gram negativas y positivas probadas independientemente del tipo de medio de cultivo. Vale la pena señalar que todos los hongos en el medio alternativo que contenía manipueira y glicerol (MAGLI) mostraron actividad inhibidora contra 3 bacterias con halos de inhibición que oscilan entre 9 y 15 mm. Por otro lado, el medio con licor macerado de maíz y glicerol (LMGLI) favoreció un mayor rendimiento de biomasa en todos los hongos. Estos resultados estimulan más estudios para identificar los metabolitos secundarios producidos por los hongos seleccionados con miras a descubrir nuevos fármacos antimicrobianos.

Biografía del autor/a

Valberto Barbosa de Oliveira, Catholic University of Pernambuco

Post-graduation Program in Development of Environmental Processes

Adriana Ferreira de Souza, Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology

Uiara Maria de Barros Lira Lins, Federal Rural University of Pernambuco

Doctorate Northeast Network for Biotechnology

Rosileide Fontenele da Silva Andrade, Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology

Galba Maria de Campos-Takaki, Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology

Marcos Antonio Barbosa de Lima, Federal Rural University of Pernambuco

Laboratory of Agricultural and Environmental Microbiology, Department of Biology

Citas

Abdel-Azeem, A., Azeem, M. A. & Khalil, W. (2019). Endophytic fungi as a new source of antirheumatoid metabolits. Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 335-384. http://dx.doi.org/10.1016/B978-0-12-813820-5.00021-0

Al-Fakih, A. A. & Almaqtri, W. Q. A. (2019). Overview on antibacterial metabolites from terrestrial Aspergillus spp. Mycolog, 10(4), 191-209. doi: 10.1080/21501203.2019.1604576.

Bauer, A. M., Kirby, W. M. M., Sherris, J. C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of. Clinical Pathology. 45(4), 493-496.

Berger, L. R. R., Stamford, T. C. M., Stamford-Arnaud, T. M., De Oliveira Franco, L., Do Nascimento, A. E., Cavalcante, H. M. D. M., Macedo, R. O. & De Campos-Takaki, G. M. (2014). Effect of Corn Steep Liquor (CSL) and Cassava Wastewater (CW) on Chitin and Chitosan Production by Cunninghamella elegans and Their Physicochemical Characteristics and Cytotoxicity. Molecules, 19, 2771-2792. https://doi.org/10.3390/molecules19032771

Cen, Q. W., Wang, Z. Y., Tang, Z. X., Zhang, Y., Chen, T., Xue, D. W., Xu, M. F., Bai, X. L., Zhou, T. & Shi, L. E. (2021). Initial purification of antimicrobial fermentation metabolites from Paecilomyces cicadae and its antimicrobial mechanism. LWT – Food Science and Technology, 148, 111785. https://doi.org/10.1016/j.lwt.2021.111785

Clancy, C. J. & Nguyen, M. H. (2019). Estimating the size of the U. S. market for new antibiotics with activity against carbapenem-resistant Enterobacteriaceae. Antimicrobial Agents and chemotherapy. 63, 1-5. https://aac.asm.org/content/63/12/e01733-19.abstract

Coetzee, J. C. J., Todoroy, S. D. & Gorgens, J. F. (2007). Increased production of bacteriocin ST4SA by Enterococcus mundtii ST4SA in molidified corn steep liquor. Annals of Microbiology., 57(617). https://doi.org/10.1007/BF03175363

Collignon, P. J. & Mcewen, S. A. (2019). One Health - Its Importance in Helping to Better Control Antimicrobial Resistance. Tropical Medicine and Infectious Disease, 4(22). https://doi.org/10.3390/tropicalmed4010022

Felipe, M. T., Bezerra, J., Motta, C. S. & Santos, C. (2019). A importância da liofilização na preservação de espécies do gênero Aspergillus de interesse biotecnológico. Revista UNINGÁ Review, 34(2), 1-15. https://revista.uninga.br/uningareviews/article/view/2764

Freitas, L. C., Barbosa, J. R., Costa, A. L. C., Bezerra, F. W. F., Pinto, R. H. H. & Junior, R. N. C. (2021). From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resources, Conservation and Recycling, 169. https://doi.org/10.1016/j.resconrec.2021.105466.

Frighetto, R. T. S. & Melo, I. S. (2007). Produção de antibióticos por microrganismos. Métodos utilizados no biocontrole de fitopatógenos. EMBRAPA, 1° edição, p. 83-95.

Garbayo, I., Vilchez, C., Nava-Saucedo, J. E. & Barbotin, J. N. (2003). Nitrogen, carbon, and light-mediated regulation studies of carotenoid biosynthesis in immobilized mycelia of Gibberella fujikuroi. Enzyme Microb Technol, 33(5), 629–34. 10.1016/S0141-0229(03)00182-0

Gmoser, R., Sintca, C., Taherzadeh, M. J. & Lennartsson, P. R. (2019). Combining submerged and solid-state fermentation to convert waste bread into protein and pigment using the edible filamentous fungus N. intermedia. Waste Management, 97, 63-70. https://doi.org/10.1016/j.wasman.2019.07.039

Hopman, N. E. M., Van dijk, M. A. M., Broens, E. M., Wagenaar, J. A., Heederik, D. J. J. & Van Geijlswijk, I. M. (2019). Quantifying antimicrobial use in Dutch companion animals. Frontiers in Veterinary Science, 158(6). http://dx.doi.otg/10.3389/fvets.2019.00158

Ichikawa, T., Date, M., Ishikura, T. & Ozaki, A. (1971). Improvement of kasugamycin-producing strain by the agar piece method and the prototroph method. Folia Microbiol., 16, 218–224. doi:10.1007/BF02884210.

Linares-Morales, J. R., Salmerón-Ochoa, I., Rivera-Chavira, B. E., Gutiérrez-Méndez, N., Pérez-Vega, S. B. & Nevárez-Moorillón, G. V. (2022). Influence of Culture Media Formulated with Agroindustrial Wastes on the Antimicrobial Activity of Lactic Acid Bacteria. Journal of Microbiology and Biotechnology, 32, 64-71. https://doi.org/10.4014/jmb.2107.07030

Lopes, F. C., Tichota, D. M. & Sauter, I. P. (2013). Active metabolites produced by Penicillium chrysogenum IFL1 growing on agro-industrial residues. Annals of Microbiology 63, 771–778. https://doi.org/10.1007/s13213-012-0532-6

Lyra, F. D. A., Gonçalves de Lima, O. Coelho, J. S. B., Albuquerque, M. M. F., Maciel, G. M., Oliveira, L. & Maciel, M. C. N. (1964). Ciclamicina e ciclacidina, dois novos antibióticos produzidos pelo Streptomyces capoamus nov sp. Anais da Academia Brasileira de Ciências, 36(3), 323-334.

Machado, W. R. C. & Burkert, J. F. M. (2015). Optimization of agroindustrial medium for the production of carotenoids by wild yeast Sporidiobolus pararoseus. African Journal of Microbiology Research, 9(4), 209-219.

Mahapatra & Banerjee (2010). Diversity and screening for antimicrobial activity of endophytic fungi from Alstonia scholaris. Acta Microbiologica et Immunologica Hungarica, 57(3), 215–223. DOI: 10.1556/AMicr.57.2010.3.6

Muzammil, S., Hayat, S., Fakhar-e-Alam, M., Aslam, B., Siddique, M. H., Nisar, M. A., Saqalein, M., Atif, M., Sarwar, A., Khurshid, A., Amin, N. & Wang, z. (2018). Nanoantibiotics: future nanotecnologies to combat antibiotic resistance. Fronties in Bioscience – Elite, 10(2), 352-374. https://doi.org/10.2741/e827

Nascimento, A. G. L. C., Torre, C. L. D. & Kadowaki, M. K. (2020). Uma abordagem sobre produção de xilanases pelo fungo Thermomyces lanuginosus utilizando resíduos agroindustriais como indutor. Pesquisa científica e tecnologia em microbiologia 2, Editora: Atena, 16, 166-176. https://www.finersistemas.com/atenaeditora/index.php/admin/api/artigoPDF/30464

Ricardino, I. E. F., Souza, M. N. C. & Neto, I. F. S. (2018). Vantagens e possibilidades do reaproveitamento de resíduos agroindustriais. Revista Alimentos: ciência, tecnologia e meio ambiente, 1(8). https://revistascientificas.ifrj.edu.br/revista/index.php/alimentos/article/viewFile/1651/977

Rodrigues, T. S., Santos, A. M. R., Lima, P. C., Moura, M. E. B., Goiano, P. D. O. L. & Fontinele, D. R. S. (2018). Resistência bacteriana á antibióticos na UTI: revisão integrativa. Revista Prevenção de Infecção e Saúde (REPIS), 4(7), 1-17. https://revistas.ufpi.br/index.php/nupcis/article/view/7350

Sá-Filho, G. F., Silva, A. I. B., Costa, E. M., Nunes, L. E., Ribeiro, L. H. F., Cavalcanti, J. R. L. P., Guzen, F. P., Oliveira, L. C. & Cavalcante, J. S. (2021). Medicinal plants used in the Brazilian Caatinga and the therapeutic potencial of secondary metabolites: a review. Research, Society and Development, 10(13). https://doi.org/10.33448/rsd-v10i13.21096

Santos, I. P.; Silva, L. C. N.; Silva, M. V.; Araújo, J. M.; Cavalcanti, M. S. & Lima, V. L.M. (2015) Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Frontiers in Microbiology, 6:350. doi: 10.3389/fmicb.2015.00350

Silber, J., Kramer, A., Labes, A. & Tasdemir, D. (2016). From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics. Marine Drugs,14(7):137. doi: 10.3390/md14070137.

Silva, Á. F. S., Souza, A. F. de, Pinheiro, I. O. & Campos-Takaki, G. M. de. (2022). Green synthesis of chitosan by Cunninghamella elegans UCP 1306 using sustainable substrates mediated morphological changes. Research, Society and Development, 11(7),38211729387. DOI: 10.33448/rsd-v11i7.29387. https://rsdjournal.org/index.php/rsd/article/view/29387

Souza, A. F., Galindo, H. M., Lima, M. A.B., Ribeaux, D. R., Rodríguez, D.M., Silva A., R. F., Gusmão, N. B. & Campos-Takaki, G. M. (2020). Biotechnological Strategies for Chitosan Production by Mucoralean Strains and Dimorphism Using Renewable Substrates. International Journal of Molecular Sciences, 21(12), 4286. https://doi.org/10.3390/ijms21124286

Wang, P., Yu, J., Zhu, K., Wang, Y., Cheng, Z., Jiang, C., Dai, J. G., Wu, J. & Zhang, H. (2018). Phenolic bisabolane sesquiterpenoids from a thai mangrove endophytic fungus, Aspergillus sp. Xy 02. Fitoterapia, 127, 22-327. https://www.sciencedirect.com/science/article/abs/pii/S0367326X18301011?via%3Dihub

WHO, World Health Organization (2020). Global antimicrobial resistance and use surveillance system (GLASS). Https://www.who.int/glass/resources/publications/early-implementation-report-2020/en/

Xu, W., Li, G., Huang, X.& Luo, Z. (2020). Fungal diversity in deep-sea sediments from the Magellan seamounts as revealed by a metabarcodig approach targeting the ITS2 regions. Journal Mycology, 11, 214–229. https://www.tandfonline.com/doi/full/10.1080/21501203.2020.1799878

Zhang, Y., Mu, J., Feng, Y., Kang, Y., Zhang, J., Gu, P. J., Wang, Y., Ma, L. F. & Zhu, Y. H. (2009). Broad-Spectrum Antimicrobial Epiphytic and Endophytic fungi from Marine Organisms: Isolation, Bioassay and Taxonomy. Marine Drugs, 7(2), 97-112. https://doi.org/10.3390/md7020097

Zhang, P, Li X. M., Mao, X. X., Mándi, Á., Kurtán, T. & Wang, B. G. (2016). Varioloid A, a new indolyl-6,10b-dihydro-5aH-[1]benzofuro[2,3-b]indole derivative from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291. Beilstein Journal of Organic Chemistry, 12, 2012-2018. https://doi.org/10.3762/bjoc.12.188

Descargas

Publicado

02/09/2022

Cómo citar

OLIVEIRA, V. B. de; SOUZA, A. F. de .; LINS, U. M. de B. L. .; ANDRADE, R. F. da S. .; CAMPOS-TAKAKI, G. M. de .; LIMA, M. A. B. de. Potencial antimicrobiano de hongos filamentosos utilizando sustratos renovables. Research, Society and Development, [S. l.], v. 11, n. 11, p. e570111133958, 2022. DOI: 10.33448/rsd-v11i11.33958. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33958. Acesso em: 26 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas