Atividades farmacológicas do gama-terpineno: Uma revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v14i7.49261

Palavras-chave:

Produto natural, Monoterpeno, Gama-terpineno, Farmacologia.

Resumo

Os monoterpenos, como gama-terpineno (γ-TPN), apresentam efeitos farmacológicos relevantes que os tornam alternativas promissoras para o tratamento de várias condições clínicas. Sendo assim, o objetivo desta revisão foi compilar os potenciais efeitos farmacológicos do γ-TPN em estudos in vitro e in vivo. Para isto, as buscas eletrônicas foram realizadas em Junho de 2025 nas bases de dados PubMed e Web of Science e reuniram estudos sobre as atividades farmacológicas do γ-TPN. Dois revisores independentes realizaram a seleção utilizando o aplicativo de revisão Rayyan e extraíram os principais dados dos estudos incluídos. Após aplicação dos critérios de elegibilidade, 13 artigos foram incluídos nesta revisão. Estes reportaram 8 atividades farmacológicas que incluíram efeitos antibacterianos, antiprotozoários, antioxidantes, citotóxicos e antitumorais, antiplaquetários, anti-inflamatórios, anti-hiperalgésicos e ações sobre o Sistema Nervoso. Diante disto, o γ-TPN apresenta-se como uma alternativa farmacológica que pode ser utilizada no tratamento de diversas patologias. No entanto, mais estudos precisam ser realizados para investigar a efetividade e o mecanismo de ação deste monoterpeno.

Referências

Aanniz, T., Elouafy, Y., Bouyahya, A., Aguerd, O., Chamkhi, I., Ullah, R., Ali, E. A., Akhazzane, M., Gallo, M., & Benali, T. (2025). Characterization of Volatile Compounds and Biological Effects Capacities of Moroccan Thymus capitatus L., Essential Oils: In Vitro and In Silico Approaches. Chemistry & Biodiversity, e202403501. https://doi.org/10.1002/cbdv.202403501

Abdallah, H. M., & Ezzat, S. M. (2011). Effect of the method of preparation on the composition and cytotoxic activity of the essential oil of Pituranthos tortuosus. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 66(3–4), 143–148. https://doi.org/10.1515/znc-2011-3-408

Acha, B. T., Pimentel, V. D., de Sousa Cavalcante, M. L., Silva, I. S., Ferreira, P. M. P., de Sousa, D. P., de Castro Almeida, F. R., & Dittz, D. (2025). Terpinolene alleviates paclitaxel-induced neuropathic pain in mice: Possible involvement of opioid and serotoninergic systems and L-arginine/nitric oxide pathway. Toxicology and Applied Pharmacology, 502, 117402. https://doi.org/10.1016/j.taap.2025.117402

Acikgul, F. C., Duran, N., Kutlu, T., Ay, E., Tek, E., & Bayraktar, S. (2024). The therapeutic potential and molecular mechanism of Alpha-pinene, Gamma-terpinene, and P-cymene against melanoma cells. Heliyon, 10(17), e36223. https://doi.org/10.1016/j.heliyon.2024.e36223

Acosta-Quiroga, K., Rocha-Valderrama, E., Zúñiga-Bustos, M., Mera-Adasme, R., Cabrera-Barjas, G., Olea-Azar, C., & Moncada-Basualto, M. (2025). Gross Antioxidant Capacity and Anti-Inflammatory Potential of Flavonol Oxidation Products: A Combined Experimental and Theoretical Study. Antioxidants, 14(4), 479. https://doi.org/10.3390/antiox14040479

Asle-Rousta, M., Abdollahi, M., Aghajari, H. M., & Peirovy, Y. (2025). Eucalyptol Attenuates Lead-Induced Anxiety-like Behaviors by Suppressing Oxidative Stress and Neuroinflammation, Modulating SIRT1/NF-κB Signaling, and Upregulating BDNF Expression. Biological Trace Element Research. https://doi.org/10.1007/s12011-025-04616-y

Balusamy, S. R., Samad, A., Singh, P., Sunderraj, S., Elsadek, M. F., Altwaijry, N., Sukweenadhi, J., & Perumalsamy, H. (2025). Comparative anti-cancer properties of carene isoforms induced apoptotic cell death in stomach and lung cancer cell lines. Naunyn-Schmiedeberg’s Archives of Pharmacology. https://doi.org/10.1007/s00210-025-04380-9

Bilbrey, J. A., Ortiz, Y. T., Felix, J. S., McMahon, L. R., & Wilkerson, J. L. (2022). Evaluation of the terpenes β-caryophyllene, α-terpineol, and γ-terpinene in the mouse chronic constriction injury model of neuropathic pain: Possible cannabinoid receptor involvement. Psychopharmacology, 239(5), 1475–1486. https://doi.org/10.1007/s00213-021-06031-2

Chao, H. W.-H., Chao, W. W.-J., & Chao, H.-M. (2025). Catalpol Protects Against Retinal Ischemia Through Antioxidation, Anti-Ischemia, Downregulation of β-Catenin, VEGF, and Angiopoietin-2: In Vitro and In Vivo Studies. International Journal of Molecular Sciences, 26(9), 4019. https://doi.org/10.3390/ijms26094019

Chen, Q., Gan, Z., Zhao, J., Wang, Y., Zhang, S., Li, J., & Ni, Y. (2014). In vitro comparison of antioxidant capacity of cumin (Cuminum cyminum L.) oils and their main components. LWT - Food Science and Technology, 55(2), 632–637. https://doi.org/10.1016/j.lwt.2013.09.017

Crossetti, M. da G. O. (2012). Revisión integrativa de la investigación en enfermería, el rigor científico que se le exige. Revista Gaúcha de Enfermagem, 33, 10–11. https://doi.org/10.1590/S1983-14472012000200002

Di Liberto, D., Iacuzzi, N., Pratelli, G., Porrello, A., Maggio, A., La Bella, S., De Blasio, A., Notaro, A., D’Anneo, A., Emanuele, S., Affranchi, F., Giuliano, M., Lauricella, M., & Carlisi, D. (2023). Cytotoxic Effect Induced by Sicilian Oregano Essential Oil in Human Breast Cancer Cells. Cells, 12(23), 2733. https://doi.org/10.3390/cells12232733

Dina, E., Cheilari, A., Vontzalidou, A., Karamani, D., Diamanti, I., Bagatzounis, P., Giannenas, I., Grigoriadou, K., & Aligiannis, N. (2024). Oregano and thyme by-products of olive oil aromatization process with microwave assisted extraction as a rich source of bio-active constituents. Frontiers in Nutrition, 11, 1372263. https://doi.org/10.3389/fnut.2024.1372263

Fakhri, S., Yarmohammadi, M., Abbaszadeh, F., Kiani, A., & Farzaei, M. H. (2025). Unveiling the anti-inflammatory and antinociceptive effects of limonene in two models of carrageenan-induced inflammation and formalin-induced pain: Role of l-arginine/nitric oxide/cGMP/KATP channel signaling pathways, opioidergic, and benzodiazepine receptors. Behavioural Pharmacology. https://doi.org/10.1097/FBP.0000000000000840

Fontinele, L. L., Heimfarth, L., Pereira, E. W. M., Rezende, M. M., Lima, N. T., Barbosa Gomes de Carvalho, Y. M., Afonso de Moura Pires, E., Guimarães, A. G., Bezerra Carvalho, M. T., de Souza Siqueira Barreto, R., Campos, A. R., Antoniolli, A. R., Antunes de Souza Araújo, A., Quintans-Júnior, L. J., & de Souza Siqueira Quintans, J. (2019). Anti-hyperalgesic effect of (-)-α-bisabolol and (-)-α-bisabolol/β-Cyclodextrin complex in a chronic inflammatory pain model is associated with reduced reactive gliosis and cytokine modulation. Neurochemistry International, 131, 104530. https://doi.org/10.1016/j.neuint.2019.104530

Gago, C., Serralheiro, A., & Miguel, M. da G. (2025). Anti-Inflammatory Activity of Thymol and Thymol-Rich Essential Oils: Mechanisms, Applications, and Recent Findings. Molecules (Basel, Switzerland), 30(11), 2450. https://doi.org/10.3390/molecules30112450

Gao, Q., Feng, Z., Wang, Z., Zhao, F., & Ju, J. (2025). Carvacrol induces apoptosis in Aspergillus niger through ROS burst. World Journal of Microbiology & Biotechnology, 41(7), 225. https://doi.org/10.1007/s11274-025-04437-0

Ghazal, T. S. A., Schelz, Z., Vidács, L., Szemerédi, N., Veres, K., Spengler, G., & Hohmann, J. (2022). Antimicrobial, Multidrug Resistance Reversal and Biofilm Formation Inhibitory Effect of Origanum majorana Extracts, Essential Oil and Monoterpenes. Plants (Basel, Switzerland), 11(11), 1432. https://doi.org/10.3390/plants11111432

Guo, Y., Baschieri, A., Amorati, R., & Valgimigli, L. (2021). Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chemistry, 345, 128468. https://doi.org/10.1016/j.foodchem.2020.128468

Hao, Y., Li, J., & Shi, L. (2021). A Carvacrol-Rich Essential Oil Extracted From Oregano (Origanum vulgare “Hot & Spicy”) Exerts Potent Antibacterial Effects Against Staphylococcus aureus. Frontiers in Microbiology, 12, 741861. https://doi.org/10.3389/fmicb.2021.741861

Islam, M. T., Al Hasan, M. S., Chowdhury, R., Mia, E., Rakib, I. H., Yana, N. T., El-Nashar, H. A. S., Ansari, S. A., Ansari, I. A., Islam, M. A., Almarhoon, Z. M., Setzer, W. N., & Sharifi-Rad, J. (2025). Unveiling the anxiolytic and analgesic effects of citronellal in Swiss mice: In vivo and in silico insights into COX and GABAA receptor pathways. Naunyn-Schmiedeberg’s Archives of Pharmacology, 398(5), 5757–5771. https://doi.org/10.1007/s00210-024-03665-9

Jamali, T., Kavoosi, G., Jamali, Y., Mortezazadeh, S., & Ardestani, S. K. (2021). In-vitro, in-vivo, and in-silico assessment of radical scavenging and cytotoxic activities of Oliveria decumbens essential oil and its main components. Scientific Reports, 11(1), 14281. https://doi.org/10.1038/s41598-021-93535-8

Kaya, S., Yalçın, T., Ayyıldız, D., & Akyol, B. (2025). Linalool May Exert Neuroprotective Effects Against Cadmium-Induced Hippocampal Neurodegeneration by Regulating the 4-HNE/NF-κB Signaling Pathway. Biological Trace Element Research. https://doi.org/10.1007/s12011-025-04734-7

Khedr, M. A., Goma, A. A., Rashed, R. R., Tohamy, H. G., Shukry, M., & El-Kazaz, S. E. (2025). Thymol alleviates silica dioxide nanoparticle-induced reproductive performance toxicity via antioxidant and anti-inflammatory mechanisms in male rats. Scientific Reports, 15(1), 23913. https://doi.org/10.1038/s41598-025-07769-x

Khoshnazar, S. M., Kazemi, M., & Amirheidari, B. (2024). Neuroprotective Effects of γ γ -Terpinene in Rats with Acute Cerebral Ischemia: Modulation of Inflammation, Apoptosis, and Oxidation. Neurochemical Research, 49(7), 1863–1878. https://doi.org/10.1007/s11064-024-04143-7

Kovalenko, N. A., Leontiev, V. N., Supichenko, G. N., Ahramovich, T. I., Feskova, E. V., & Shutova, A. G. (2022). Antimicrobial Properties of Essential Oils of the Monarda Genus Plants Cultivated in Belarus. Russian Journal of Bioorganic Chemistry, 48(7), 1448–1453. https://doi.org/10.1134/S1068162022070123

Ladan Moghadam, A. R. (2015). Antioxidant Activity and Essential Oil Evaluation of Satureja hortensis L. (Lamiaceae) from Iran. Journal of Essential Oil Bearing Plants, 18(2), 455–459. https://doi.org/10.1080/0972060X.2014.1002014

Li, Y., Zhou, J., Gu, J., Shao, Q., & Chen, Y. (2022). Enhanced antibacterial activity of levofloxacin/hydroxypropyl-β-cyclodextrin inclusion complex: In vitro and in vivo evaluation. Colloids and Surfaces. B, Biointerfaces, 215, 112514. https://doi.org/10.1016/j.colsurfb.2022.112514

Lima, R. P., Carrea, D. de A., Garcia, V. A. dos S., Tostes Filgueiras, C., Matta Fakhouri, F., & Velasco, J. I. (2025). Development of Gelatin-Based Renewable Packaging with Melaleuca alternifolia Essential Oil for Chicken Breast Preservation. Polymers, 17(5), 646. https://doi.org/10.3390/polym17050646

Limboonreung, T., Suansilpong, T., Jumjitvi, P., Lohawittayanan, D., Krobthong, S., & Charoensutthivarakul, S. (2025). Quinazolinedione Derivatives as Potential Anticancer Agents Through Apoptosis Induction in MCF-7. International Journal of Molecular Sciences, 26(13), 6038. https://doi.org/10.3390/ijms26136038

Mostafa-Hedeab, G., Hegazy, A., Mostafa, I., Eissa, I. H., Metwaly, A. M., Elhady, H. A., Eledrdery, A. Y., Alruwaili, S. H., Alibrahim, A. O. E., Alenazy, F. O., Alruwaili, M. F. A., Marghel, T. A., Alruwaili, M., Saad, A. M., Bayoumi, M., El-Shazly, A. M., Martinez-Sobrido, L., & Mostafa, A. (2025). In vitro antiviral activities of thymol and Limonin against influenza a viruses and SARS-CoV-2. Scientific Reports, 15(1), 22587. https://doi.org/10.1038/s41598-025-06967-x

Nooshadokht, M., Mirzaei, M., Sharifi, I., Sharifi, F., Lashkari, M., & Amirheidari, B. (2022). In silico and in vitro antileishmanial effects of gamma-terpinene: Multifunctional modes of action. Chemico-Biological Interactions, 361, 109957. https://doi.org/10.1016/j.cbi.2022.109957

Nouri, A., Mofasseri, M., Jahani, R., Ghodrati, M., Emam, S. M. M., & Ebadi, M.-T. (2024). Phytochemical composition, hypnotic activity, and antinociceptive properties of cumin essential oil collected from various geographical regions. Food Science & Nutrition, 12(11), 9025–9034. https://doi.org/10.1002/fsn3.4432

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—A web and mobile app for systematic reviews. Systematic Reviews, 5(1), 210. https://doi.org/10.1186/s13643-016-0384-4

Oyedemi, S. O., Okoh, A. I., Mabinya, L. V., Pirochenva, G., & Afolayan, A. J. (2009). The proposed mechanism of bactericidal action of eugenol, ∝-terpineol and g-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. African Journal of Biotechnology, 8(7), Artigo 7. https://www.ajol.info/index.php/ajb/article/view/60106

Oz, M., Lozon, Y., Sultan, A., Yang, K.-H. S., & Galadari, S. (2015). Effects of monoterpenes on ion channels of excitable cells. Pharmacology & Therapeutics, 152, 83–97. https://doi.org/10.1016/j.pharmthera.2015.05.006

Öztürk, M. (2012). Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chemistry, 134(1), 48–54. https://doi.org/10.1016/j.foodchem.2012.02.054

Passos, F. F. de B., Lopes, E. M., de Araújo, J. M., de Sousa, D. P., Veras, L. M. C., Leite, J. R. S. A., & Almeida, F. R. de C. (2015). Involvement of Cholinergic and Opioid System in γ-Terpinene-Mediated Antinociception. Evidence-Based Complementary and Alternative Medicine: eCAM, 2015, 829414. https://doi.org/10.1155/2015/829414

Patwa, N., Singh, G., Sharma, V., Chaudhary, P., Sharma, B., Haque, S., Yadav, V., Satapathy, S. R., & Tuli, H. S. (2025). Targeting Gastrointestinal Cancers with Carvacrol: Mechanistic Insights and Therapeutic Potential. Biomolecules, 15(6), 777. https://doi.org/10.3390/biom15060777

Pereira A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria/RS. 1ª Ed. UAB/NTE/UFSM

Pina, L. T. S., Rabelo, T. K., Borges, L. P., S S Gonçalves, V., Silva, A. S., Oliveira, M. A., S S Quintans, J., Quintans Júnior, L. J., Scotti, L., Scotti, M. T., da Silva Júnior, E. G., Douglas Melo Coutinho, H., & Guimarães, A. G. (2024). Antihyperalgesic effect of γ-terpinene complexed in β-cyclodextrin on neuropathic pain model induced by tumor cells. International Journal of Pharmaceutics, 662, 124538. https://doi.org/10.1016/j.ijpharm.2024.124538

Pina, L. T. S., Rabelo, T. K., Trindade, G. G. G., Almeida, I. K. S., Oliveira, M. A., Santos, P. L., Souza, D. S., de Menezes-Filho, J. E. R., de Vasconcelos, C. M. L., Santos, S. L., Scotti, L., Scotti, M. T., Araújo, A. A. S., Quintans, J. S. S., Quintans, L. J., & Guimarães, A. G. (2022). γ-Terpinene complexed with β-cyclodextrin attenuates spinal neuroactivity in animals with cancer pain by Ca2+ channel block. The Journal of Pharmacy and Pharmacology, 74(11), 1629–1639. https://doi.org/10.1093/jpp/rgac052

Ramalho, T. R. de O., Oliveira, M. T. P. de, Lima, A. L. de A., Bezerra-Santos, C. R., & Piuvezam, M. R. (2015). Gamma-Terpinene Modulates Acute Inflammatory Response in Mice. Planta Medica, 81(14), 1248–1254. https://doi.org/10.1055/s-0035-1546169

Ravelo Martínez, S. A., Rodríguez Melendez, V. I., Rosero Rosero, J. C., Stashenko, E., & Tafurt-García, G. (2024). Volatile metabolites, antioxidant and biological activities of Bursera simaruba (L.) Sarg. Essential oil, from the tropical dry forest, Cesar, Colombian Caribbean Region. Journal of Biologically Active Products from Nature, 14(1), 51–63. https://doi.org/10.1080/22311866.2024.2304596

Rivera-Yañez, C. R., Terrazas, L. I., Jimenez-Estrada, M., Campos, J. E., Flores-Ortiz, C. M., Hernandez, L. B., Cruz-Sanchez, T., Garrido-Fariña, G. I., Rodriguez-Monroy, M. A., & Canales-Martinez, M. M. (2017). Anti-Candida Activity of Bursera morelensis Ramirez Essential Oil and Two Compounds, α-Pinene and γ-Terpinene-An In Vitro Study. Molecules (Basel, Switzerland), 22(12), 2095. https://doi.org/10.3390/molecules22122095

Santos, P. R., de Andrade Porto, S. M., Brandão, F. R., de Melo Souza, D. C., Rocha, M. J. S., de Alexandre Sebastião, F., Oliveira, M. R., Chaves, F. C. M., & Chagas, E. C. (2023). Efficacy of the essential oils of Aloysia triphylla, Lippia gracilis and Piper aduncum in the control of Piscinoodinium pillulare (Shaperclaus, 1954) in Colossoma macropomum (Cuvier, 1818). Aquaculture, 565, 739127. https://doi.org/10.1016/j.aquaculture.2022.739127

Silva, G. H. O., Amaral, C. F., da Rocha, E. M. T., Cuman, R. K. N., & de Souza Silva Comar, F. M. (2025). Effect of gamma-terpinene on the articular inflammatory response. Naunyn-Schmiedeberg’s Archives of Pharmacology. https://doi.org/10.1007/s00210-025-04153-4

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Souza, R. P., Pimentel, V. D., de Sousa, R. W. R., Sena, E. P., da Silva, A. C. A., Dittz, D., Ferreira, P. M. P., & de Oliveira, A. P. (2024). Non-clinical investigations about cytotoxic and anti-platelet activities of gamma-terpinene. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397(10), 8145–8160. https://doi.org/10.1007/s00210-024-03173-w

Tan, K. B. C., Alexander, H. D., Linden, J., Murray, E. K., & Gibson, D. S. (2024). Anti-inflammatory effects of phytocannabinoids and terpenes on inflamed Tregs and Th17 cells in vitro. Experimental and Molecular Pathology, 139, 104924. https://doi.org/10.1016/j.yexmp.2024.104924

Tan, X. C., Chua, K. H., Ravishankar Ram, M., & Kuppusamy, U. R. (2016). Monoterpenes: Novel insights into their biological effects and roles on glucose uptake and lipid metabolism in 3T3-L1 adipocytes. Food Chemistry, 196, 242–250. https://doi.org/10.1016/j.foodchem.2015.09.042

Wu, W., Wang, D., Shi, Y., Wang, Y., Wu, Y., Wu, X., Shah, B. A., & Ye, G. (2025). 1,8-Cineole Alleviates Hippocampal Oxidative Stress in CUMS Mice via the PI3K/Akt/Nrf2 Pathway. Nutrients, 17(6), 1027. https://doi.org/10.3390/nu17061027

Yue, Y., Li, C., Zhang, T., & Park, S. (2025). Neuroprotective Effects of SELFormer-Selected β-Citronellol and β-Caryophyllene in Vagotomized Ischemic Stroke Model Through Direct Brain Protection and Gut Microbiota Modulation. BioFactors (Oxford, England), 51(4), e70031. https://doi.org/10.1002/biof.70031

Downloads

Publicado

2025-07-23

Edição

Seção

Ciências da Saúde

Como Citar

Atividades farmacológicas do gama-terpineno: Uma revisão. Research, Society and Development, [S. l.], v. 14, n. 7, p. e6914749261, 2025. DOI: 10.33448/rsd-v14i7.49261. Disponível em: https://rsdjournal.org/rsd/article/view/49261. Acesso em: 5 dez. 2025.