Effects of the association of photobiomodulation and implantation of Biosilicate® scaffolds on the consolidation of critical-sized bone defects

Authors

DOI:

https://doi.org/10.33448/rsd-v14i9.49424

Keywords:

Fractures, Bone, Laser Therapy, Biocompatible Materials.

Abstract

This study aimed to evaluate the effects of photobiomodulation combined with Biosilicate® scaffold implantation on bone callus morphology 15 days after the creation of 8 mm cranial bone defects. Twenty male Wistar rats were allocated into two groups: Control Group – animals underwent bone defect induction but did not receive any treatment; and Biosilicate® + Photobiomodulation Group – animals underwent bone defect induction, received Biosilicate® scaffold implantation, and were treated with laser therapy. The laser irradiation device operated at a wavelength of 830 nm, delivering a fluence of 120 J/cm² per point. Point irradiation was applied to five different regions of the bone defect. Laser therapy was initiated immediately after surgery, with sessions performed every 48 hours, totaling seven applications. Histological analysis revealed that the combined therapy accelerated the regeneration process, as the treated group exhibited increased new bone formation, more granulation tissue, and reduced inflammatory infiltration compared with the control group. These findings suggest that combining photobiomodulation with Biosilicate® scaffolds may enhance bone healing in cases of difficult-to-treat fractures.

References

Aboelsaad, N. S., Soory, M., Gadalla, L. M., Ragab, L. I., Dunne, S., Zalata, K. R., & Louca, C. (2009). Effect of soft laser and bioactive glass on bone regeneration in the treatment of bone defects (an experimental study). Lasers in Medical Science, 24(4), 527–533. https://doi.org/10.1007/s10103-008-0599-3

Arruda, E. R. B., Rodrigues, N. C., Taci, C., & Parizotto, N. A. (2011). Biocompatibilidade e bioatividade do biovidro genérico 45S5 cristalizado sob condições controladas. Revista CITINO: Ciência, Tecnologia, Inovação e Oportunidade, 1(1), 19–25.

Bai, J., et al. (2021). Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Research & Therapy, 12, 432. https://doi.org/10.1186/s13287-021-02493-5

Bossini, P. S., Fangel, R., Habenschus, R. M., Rennó, A. C., Benze, B., Zuanon, J. A., Neto, C. B., & Parizotto, N. A. (2009). Low level laser therapy (670 nm) on viability of random skin flap in rats. Lasers in Medical Science, 24(2), 209–213. https://doi.org/10.1007/s10103-007-0516-y

Bossini, P. S., Rennó, A. C., Ribeiro, D. A., Fangel, R., Peitl, O., Zanotto, E. D., & Parizotto, N. A. (2011). Biosilicate® and low-level laser therapy improve bone repair in osteoporotic rats. Journal of Tissue Engineering and Regenerative Medicine, 5(3), 229–237. https://doi.org/10.1002/term.299

Brasileiro Filho, G. (2006). Bogliolo patologia (7ª ed.). Rio de Janeiro: Guanabara Koogan.

Crovace, M. C., et al. (2015). Biosilicate® – A multipurpose, highly bioactive glass-ceramic: In vitro, in vivo and clinical trials. Journal of Non-Crystalline Solids, 432, 90–110. https://doi.org/10.1016/j.jnoncrysol.2015.04.018

Ehnert, S., & Histing, T. (2024). Advances in fracture healing research. Bioengineering, 11(1), 67. https://doi.org/10.3390/bioengineering11010067

El-Rashidy, A. A., Roether, J. A., Harhaus, L., Kneser, U., & Boccaccini, A. R. (2017). Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomaterialia, 62, 1–28. https://doi.org/10.1016/j.actbio.2017.08.030

Escudero, J. S. B., et al. (2019). Photobiomodulation therapy (PBMT) in bone repair: A systematic review. Injury, 50(11), 1853–1867. https://doi.org/10.1016/j.injury.2019.09.031

Fangel, R., Bossini, P. S., Rennó, A. C., Ribeiro, D. A., Wang, C. C., Toma, R. L., Nonaka, K. O., Driusso, P., Parizotto, N. A., & Oishi, J. (2011). Low-level laser therapy, at 60 J/cm² associated with a Biosilicate® increase in bone deposition and indentation biomechanical properties of callus in osteopenic rats. Journal of Biomedical Optics, 16(7), 078001. https://doi.org/10.1117/1.3598847

Fávaro-Pípi, E., et al. (2010). Comparative study of the effects of low-intensity pulsed ultrasound and low-level laser therapy on bone defects in tibias of rats. Lasers in Medical Science, 25(5), 727–732. https://doi.org/10.1007/s10103-010-0771-3

Fernandes, K. R., et al. (2012). Comparação dos efeitos do laser de baixa potência e do ultrassom de baixa intensidade associado ao Biosilicato® no processo de reparo ósseo em tíbias de ratos. Revista Brasileira de Ortopedia, 47(1), 9–14. https://doi.org/10.1590/S0102-36162012000100014

Fernandes, M. C. S., & Morelli, M. R. (2019). Desenvolvimento de arcabouços de óxido de titânio e Biosilicato® para regeneração óssea. Cerâmica, 65(381), 1–8. https://doi.org/10.1590/0366-69132019653813001

Greer, N., Yoon, P., Majeski, B., & Wilt, T. J. (2020). Orthobiologics in foot and ankle arthrodesis sites: A systematic review (VA Evidence-based Synthesis Program Reports). Department of Veterans Affairs (US). https://pubmed.ncbi.nlm.nih.gov/32574000/

Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295(5557), 1014–1017. https://doi.org/10.1126/science.1067404

Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis: Review. Biomaterials, 26(27), 5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002

Magri, A. M. P., Parisi, J. R., de Andrade, A. L. M., & Rennó, A. C. M. (2021). Bone substitutes and photobiomodulation in bone regeneration: A systematic review in animal experimental studies. Journal of Biomedical Materials Research Part A, 109(9), 1765–1775. https://doi.org/10.1002/jbm.a.37192

Maruyama, M., Rhee, C., Utsunomiya, T., Zhang, N., Ueno, M., Yao, Z., & Goodman, S. B. (2021). Insights into the cellular and molecular mechanisms that govern fracture healing. International Journal of Molecular Sciences, 22(2), 943. https://doi.org/10.3390/ijms22020943

Oliveira, P., Ribeiro, D. A., Pipi, E. F., Driusso, P., Parizotto, N. A., & Rennó, A. C. (2010). Low level laser therapy does not modulate the outcomes of a highly bioactive glass-ceramic (Biosilicate) on bone consolidation in rats. Journal of Materials Science: Materials in Medicine, 21(4), 1379–1384. https://doi.org/10.1007/s10856-009-3955-3

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria: Editora da UFSM.

Pinto, K. N., Tim, C. R., Crovace, M. C., Matsumoto, M. A., Parizotto, N. A., Zanotto, E. D., Peitl, O., & Rennó, A. C. (2013). Effects of biosilicate scaffolds and low-level laser therapy on the process of bone healing. Photomedicine and Laser Surgery, 31(6), 252–260. https://doi.org/10.1089/pho.2012.3435

Raina, D. B., Isaksson, H., Lidgren, L., & Tägil, M. (2024). Delivery of growth factors to enhance bone repair. Frontiers in Bioengineering and Biotechnology, 12, 1344769. https://doi.org/10.3389/fbioe.2024.1344769

Rennó, A. C. M., McDonnell, P. A., Parizotto, N. A., & Laakso, E.-L. (2007). The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomedicine and Laser Surgery, 25(4), 275–280. https://doi.org/10.1089/pho.2006.2042

Rubin, E., Gorstein, F., Rubin, R., Schwarting, R., & Strayer, D. (2006). Rubins patologia: Bases clinicopatológicas da medicina (4ª ed.). Rio de Janeiro: Guanabara Koogan.

Santinoni, C. D., Oliveira, H. F., Batista, V. E., Lemos, C. A., & Verri, F. R. (2017). Influence of low-level laser therapy on the healing of human bone maxillofacial defects: A systematic review. Journal of Photochemistry and Photobiology B: Biology, 169, 83–89. https://doi.org/10.1016/j.jphotobiol.2017.03.004

Santos, A. O. dos, Silva, A. C. de O., Silva, L. M. de O., et al. (2024). Eficácia de diferentes tratamentos de consultório para hipersensibilidade dentinária: Um estudo clínico randomizado. Brazilian Dental Journal, 35(6), 531–537. https://doi.org/10.1590/0103-6440202304189

Souza, C. F. S. (2010). Estudo histomorfométrico da reparação óssea em ratos após o uso de biomaterial de origem sintética [Dissertação de mestrado, Universidade Federal da Paraíba].

Tim, C. R., Pinto, K. N. Z., Rossi, B. R. O., Fernandes, K., Matsumoto, M. A., Parizotto, N. A., & Rennó, A. C. M. (2014). Low-level laser therapy enhances the expression of osteogenic factors during bone repair in rats. Lasers in Medical Science, 29(1), 147–156. https://doi.org/10.1007/s10103-013-1302-9

Vitale-Brovarone, C., Verné, E., Robiglio, L., Appendino, P., Bassi, F., Martinasso, G., Muzio, G., & Canuto, R. (2007). Development of glass-ceramic scaffolds for bone tissue engineering: Characterization, proliferation of human osteoblasts and nodule formation. Acta Biomaterialia, 3(2), 199–208. https://doi.org/10.1016/j.actbio.2006.09.002

Zanotto, E. D., Ravagnani, C., Peitl Filho, O., Panzeri, H., & Guimarães Lara, E. H. (2004). Process and compositions for preparing particulate, bioactive or resorbable biosilicates for use in the treatment of oral ailments (Patente internacional WO 2004/074199 A1). WIPO – World Intellectual Property Organization.

Zhu, S., Chen, W., Masson, A., & Li, Y.-P. (2024). Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discovery, 10, 71. https://doi.org/10.1038/s41421-024-00689-6

Downloads

Published

2025-09-05

Issue

Section

Health Sciences

How to Cite

Effects of the association of photobiomodulation and implantation of Biosilicate® scaffolds on the consolidation of critical-sized bone defects. Research, Society and Development, [S. l.], v. 14, n. 9, p. e1114949424, 2025. DOI: 10.33448/rsd-v14i9.49424. Disponível em: https://rsdjournal.org/rsd/article/view/49424. Acesso em: 5 dec. 2025.