Climate variability and its impact on mandarin (Citrus reticulata) production in the Santa Rita parish of the Chone canton.
DOI:
https://doi.org/10.33448/rsd-v14i9.49458Keywords:
Variability, Production, Yield, Seasons, Mandarin.Abstract
Climate variability is a determining factor for agricultural sustainability and food security. The objective of this study was to evaluate the impact of climatic conditions on mandarin production in the Santa Rita parish, Chone canton. Two zones were distinguished: the upper zone, called "Río Santo," and the lower zone, "Río Mosquito." The research included the analysis of seven production parameters through producer surveys, complemented by the installation of meteorological stations in each zone for the daily collection of precipitation, temperature, humidity, and evapotranspiration data for seven months (January–July 2025). The data were statistically analyzed using Pearson correlation and compared with 12-year historical series from NASA (2010–2022). The results showed that the most cultivated variety was the Manabita, with average yields of 169.83 kg/m² in Río Santo and 149.18 kg/m² in Río Mosquito. Evapotranspiration and temperature were positively correlated with yield (r = 0.82 and r = 0.87, respectively), while humidity and precipitation showed negative correlations. These findings confirm that climate variability directly influences flowering and fruiting processes in mandarin, affecting yield levels in the studied areas.
References
Acevedo, A. A., & Reyes, E. P. R. (2024). Efecto de las variables meteorológicas en la evapotranspiración de referencia mediante métodos estadísticos multivariados en la cuenca del río Mosna. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 26(4), 180–185. https://doi.org/10.18271/ria.2024.622
Alcántara, E., Cuaical, J., Mora, S., Puetate, L., Revelo, V., & Ruiz, M. (2021). Biofertilización con bacterias solubilizadoras de fósforo y hongos micorrízicos arbusculares en el cultivo de la papa. Cultivos Tropicales, 42(2). http://scielo.sld.cu/scielo.php?script=sci_arttextypid=S0258-59362021000200002ylng=esytlng=es
Alessandri, P., & Mumtaz, H. (2021). The macroeconomic cost of climate volatility. SciSpace - Paper. https://typeset.io/papers/the-macroeconomic-cost-of-climate-volatility-58ab44ve6e
Alexis, T. S. V., & Wyseure, G. (2018). Seasonal rainfall patterns classification, relationship to ENSO and rainfall trends in Ecuador. https://dspace.ucuenca.edu.ec/items/81d7cabd-667b-49d7-97e2-5a21c5fee9c9
Alharbi, K., Alshallash, K. S., Hamdy, A. E., Khalifa, S. M., Abdel-Aziz, H. F., Sharaf, A., & Abobatta, W. F. (2022). Magnetic Iron–Improved Growth, Leaf Chemical Content, Yield, and Fruit Quality of Chinese Mandarin Trees Grown under Soil Salinity Stress. Plants, 11(21), 2839. https://doi.org/10.3390/plants11212839
Apodaca, C., Juárez, J., Ramírez, B., & Méndez, J. (2023). Estrategias de adaptación campesina ante la variabilidad climática. Caso del café, municipio de Huehuetla, estado de Puebla, México. Revista Geográfica Venezolana, 64(1), 73–84. https://doi.org/10.53766/rgv/2022.64.01.03
Aria, P. A., Rivera, J. A., Sörensson, A. A., Zachariah, M., Barnes, C., Philip, S., ... Otto, F. E. L. (2023). Interplay between climate change and climate variability: the 2022 drought in Central South America. Climatic Change, 177(1). https://doi.org/10.1007/s10584-023-03664-4
Ariza, A., Pavón, P., Carmona, R., De Ravé, E. G., & Jiménez, F. (2019). Joint multifractal analysis of air temperature, relative humidity and reference evapotranspiration in the middle zone of the Guadalquivir river valley. Agricultural and Forest Meteorology, 278, 107657. https://doi.org/10.1016/j.agrformet.2019.107657
Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2021). El futuro de los cítricos: Impacto del cambio climático en la citricultura. Mètode Revista De Difusió De La Investigació. https://doi.org/10.7203/metode.12.20319
Bekraoui, A., Chakir, S., Fatnassi, H., Mouqallid, M., & Majdoubi, H. (2022). Climate Behaviour and plant heat activity of a citrus Tunnel Greenhouse: A Computational Fluid Dynamic study. AgriEngineering, 4(4), 1095–1115. https://doi.org/10.3390/agriengineering4040068
Benavides, H. M., Correa, V., Pucha, D., & Pucha, F. (2024). Analysis of land use change and hydrogeological parameters in the Andean Semiarid Region of Ecuador. Water, 16(6), 892. https://doi.org/10.3390/w16060892
Berríos, P., Temnani, A., Zapata, S., Forcén-Muñoz, M., Franco, J. A., & Pérez-Pastor, A. (2022). Sensitivity to water deficit of the second stage of fruit growth in late mandarin trees. Irrigation Science, 41(1), 35–47. https://doi.org/10.1007/s00271-022-00796-w
Berríos, P., Temnani, A., Zapata-García, S., Sánchez-Navarro, V., Zornoza, R., & Pérez-Pastor, A. (2023). Effect of deficit irrigation and mulching on the agronomic and physiological response of mandarin trees as strategies to cope with water scarcity in a semi-arid climate. Scientia Horticulturae, 324, 112572. https://doi.org/10.1016/j.scienta.2023.112572
Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., & Sims, R. (2019). The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions. Sustainability, 11(1), 222. https://doi.org/10.3390/su11010222
Diaz, D. A. F., & Lagos, J. C. E. (2024). Modelamiento hidráulico para evaluar impactos ambientales de variaciones en la intensidad de lluvias en Trujillo, Perú. Revista Alfa, 8(23), 610–621. https://doi.org/10.33996/revistaalfa.v8i23.289
Diaz, H. A. O., Amado, C. D. E., & Mora, S. B. S. (2018). Análisis estadístico de variables climatológicas en la ciudad de Cúcuta. Respuestas, 23(1), 39–44. https://doi.org/10.22463/0122820x.1328
Donadelli, M., Jüppner, M., & Vergalli, S. (2021). Temperature Variability and the Macroeconomy: A World Tour. Environmental And Resource Economics, 83(1), 221–259. https://doi.org/10.1007/s10640-021-00579-5
Dong, Z., Chen, M., Srivastava, A. K., Mahmood, U. H., Ishfaq, M., Shi, X., Zhang, Y., Moussa, M. G., Li, X., Hu, C., & Zhang, F. (2024). Climate changes altered the citrus fruit quality: A 9-year case study in China. The Science of the Total Environment, 923, 171406. https://doi.org/10.1016/j.scitotenv.2024.171406
Fonseca, N. E., Salamanca, J. D., & Vega, Z. Y. (2019). La agricultura familiar agroecológica, una estrategia de desarrollo rural incluyente. Una revisión. Temas Agrarios, 24(2), 96–107. https://doi.org/10.21897/rta.v24i2.1356
García, I., Romero, R., Jiménez, J., Martínez, G., Durán, V., & Muriel, J. (2010). Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity. Agricultural Water Management, 97(5), 689–699. https://doi.org/10.1016/j.agwat.2009.12.012
Gariglio, N., Reig, C., & Agustí, M. (2024). Unraveling water relations in growing fruit: insights from the epidermal growth regulation hypothesis. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1495916
Gómez, S., Torres, V., García, Y., Herrera, M., Medina, Y., & Rodríguez, R. (2019). Procedimiento estadístico para el análisis de experimentos con medidas repetidas en el tiempo en la esfera agropecuaria. Cuban Journal Of Agricultural Science, 53(4), 353–360. http://scielo.sld.cu/pdf/cjas/v53n4/2079-3480-cjas-53-04-353.pdf
Haque, M. A., & Sakimin, S. Z. (2022). Planting Arrangement and Effects of Planting Density on Tropical Fruit Crops—A Review. Horticulturae, 8(6), 485. https://doi.org/10.3390/horticulturae8060485
He, L., Fang, W., Zhao, G., Wu, Z., Fu, L., Li, R., Majeed, Y., & Dhupia, J. (2022). Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods. Computers And Electronics In Agriculture, 195, 106812. https://doi.org/10.1016/j.compag.2022.106812
Hidalgo, M., Ángeles, G., Yépez, E. A., Plascencia, F. O., Delgado, J., & González, T. M. (2020). Evapotranspiración e intercambio de energía en un bosque templado de México. Tecnología Y Ciencias Del Agua, 12(2), 490–537. https://doi.org/10.24850/j-tyca-2021-02-11
Hu, T., Zhang, X., Khanal, S., Wilson, R., Leng, G., Toman, E. M., Wang, X., Li, Y., & Zhao, K. (2024). Climate change impacts on crop yields: A review of empirical findings, statistical crop models, and machine learning methods. Environmental Modelling y Software, 179, 106119. https://doi.org/10.1016/j.envsoft.2024.106119
Ladaniya, M. S., Marathe, R. A., Murkute, A. A., Huchche, A. D., Das, A. K., George, A., & Kolwadkar, J. (2021a). Response of Nagpur mandarin (Citrus reticulata Blanco) to high density planting systems. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-89221-4
Maciáz, A. A., Núñez, D., Martínez, J. J., Legua, P., & Melgarejo, P. (2024). Mandarin Variety Significantly Affects the Metabolites Present in the Leaves. Horticulturae, 10(4), 359. https://doi.org/10.3390/horticulturae10040359
Martínez, A. M., Tordecilla, L., Grandett, L. M., Del Valle Rodríguez, M., Cordero-Cordero, C. C., Silva-Acosta, G. E., ... Orozco-Guerrero, A. R. (2019). Análisis económico de la producción de berenjena (Solanum melongena L.) en dos zonas productoras del Caribe colombiano: Sabanas de Sucre y Valle del Sinú en Córdoba. Ciencia y Agricultura, 16(3), 17–34. https://doi.org/10.19053/01228420.v16.n3.2019.9514
Martínez, E. A., De Niz-Lara Ingeniera, E. M., Benítez-Muñoz, M. Á., Olguín, J. L., Guevara, R. D., Meza, D., & Villalvazo, V. M. (2019, junio). Geoprocessamento aplicado a análise geoambiental no município de Vitória da Conquista-Bahia. Revista Geográfica de América Central. https://doi.org/10.15359/rgac.62-1.1
Medda, S., Fadda, A., & Mulas, M. (2022). Influence of climate change on metabolism and biological characteristics in perennial woody fruit crops in the Mediterranean environment. Horticulturae, 8(4), 273. https://doi.org/10.3390/horticulturae8040273
Meena, P. N., Raghavendra, D., Singh, S., Kumar, N., Khokhar, M. K., Chander, S., Lal, M. K., Tiwari, R. K., & Kumar, R. (2025). Integrated Pest Management Techniques in a Kinnow Mandarin (Citrus reticulata Blanco) Orchard with an Emphasis on Yield Improvement. Heliyon, 11(4), e42574. https://doi.org/10.1016/j.heliyon.2025.e42574
Montero, V. F. P., Muñoz, O. B. S., Escobar, K. M., & Fiallos, F. R. G. (2020). La Caracterización de las unidades productivas de soya en la costa ecuatoriana. Ciencia y Tecnología Agropecuaria, 21(3), 1–20. https://doi.org/10.21930/rcta.vol21_num3_art:1494
Monterroso, A. I., & Gómez, J. D. (2021). Impacto del cambio climático en la evapotranspiración potencial y periodo de crecimiento en México. Terra Latinoamericana, 39. https://doi.org/10.28940/terra.v39i0.774
NASA Goddard Institute for Space Studies (GISS). (2025). GISS Surface Temperature Analysis (GISTEMP), version 4. Recuperado de https://data.giss.nasa.gov/gistemp/Navejas, J., Nieto-Garibay, A., Fraga, H. C., Rueda, E. O., y Avila, N. Y. (2011). Comparación de métodos para estimar la evapotranspiración en una zona árida citrícola del noroeste de México. Ropical and Subtropical Agroecosystems, 13(2), 147–155.
Nawaz, R., Abbasi, N., Hafiz, I. A., & Khalid, A. (2020). Impact of climate variables on fruit internal quality of Kinnow mandarin (Citrus nobilis Lour x Citrus deliciosa Tenora) in ripening phase grown under varying environmental conditions. Scientia Horticulturae, 265, 109235. https://doi.org/10.1016/j.scienta.2020.109235
Nelson, G., Rosegrant, Koo, J., Robertson, R., Sulser, T., Zhu, T., ... Lee, D. (2009). Cambio Climático: El impacto en la agricultura y los costos de adaptación. https://doi.org/10.2499/0896295370
Nesbitt, S. W., & Zipser, E. J. (2003). The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. Journal of Climate, 16(10), 1456–1475. https://doi.org/10.1175/1520-0442(2003)016<1456:TDCORA>2.0.CO;2
Palominos, T., Villatoro, M., Alvarado, A., Cortés, V., & Paguada, D. (2022). Estimación de la humedad del suelo mediante regresiones lineales múltiples en Llano Brenes, Costa Rica. Agronomía Mesoamericana, 47872. https://doi.org/10.15517/am.v33i2.47872
Panigrahi, P. (2023). Scheduling irrigation for improving water productivity and fruit quality in citrus (cv. Nagpur mandarin) under a dry tropical climate. Irrigation Science, 41(4), 511–520. https://doi.org/10.1007/s00271-023-00847-w
Paredes, A., & Perez, M. (2008, marzo). Diseño de la red de transmisión de datos para el Centro de Comunicaciones Hidrometeorológico del INAMHI para la provincia del callejón Interandino del Ecuador utilizando la plataforma celular GPRS [Tesis de grado, Escuela Politécnica Nacional]. https://biblioteca.epn.edu.ec/cgi-bin/koha/opac-imageviewer.pl?biblionumber=8455
Pereira, A S et al. (2018). Metodología de la investigación científica. [libro electrónico gratuito]. Santa María/RS. Ed. UAB/NTE/UFSM.
Pérez, R., Cabrera, E., Hinostroza, M. I., & Manzaba, J. R. (2018). Régimen de riego de cultivos en Manabí-Ecuador: estudio climatológico. Revista Ciencias Técnicas Agropecuarias, 27(1), 5–12. http://scielo.sld.cu/pdf/rcta/v27n1/rcta01118.pdf
Plan de Desarrollo y Ordenamiento Territorial de Chone [PDOT]. (2014). En GADM Chone. https://chone.gob.ec/pdf/lotaip2/documentos/pdot.pdf
Plan de Desarrollo y Ordenamiento Territorial de Chone [PDOT]. (2019).
Primo, A., Molina, M. D., Catalá, L., De Miguel, B., & Bolarín, F. (2020). Optimización del uso del agua mediante la aplicación de riego deficitario controlado (RDC) en cítricos: Una revisión. Agricultural Water Management, 241, 106354. https://doi.org/10.1016/j.agwat.2020.106354
Rao, N., Nguyen, H., & Liu, X. (2020). A review of climate change impact on citrus yield, quality, and management practices. Agricultural Systems, 181, 102824. https://doi.org/10.1016/j.agsy.2020.102824
Reddy, M., & Sreenivas, T. (2021). Assessment of irrigation scheduling and evapotranspiration in citrus orchards: a case study. Irrigation Science, 39(2), 221–237. https://doi.org/10.1007/s00271-021-00785-2
Rengasamy, R. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613–620. https://doi.org/10.1071/FP09254
Reyes, H., & Andrade, M. (2017). Evaluación del comportamiento fenológico de las principales variedades de cítricos en Ecuador. Revista de Ciencias Horticulturales, 43(2), 215–228. https://doi.org/10.21930/rch.v43i2.1909
Rincón, G. J., & Morales, A. P. (2021). Optimización de riego en cítricos mediante métodos de evapotranspiración. AgroCiencia, 55(1), 65–80. https://doi.org/10.3390/agriculture11030227
Rodríguez, C., Delgado, M., & Pérez, E. (2020). Influencia de la evapotranspiración en la productividad de mandarinas en la región mediterránea. Journal of Agricultural Science, 12(3), 102–115. https://doi.org/10.5539/jas.v12n3p102
Sallam, A., Abdel-Sattar, M., & El-Ramady, H. (2022). Influence of deficit irrigation on growth, yield and fruit quality of citrus under Mediterranean conditions: A review. Agricultural Water Management, 270, 107720. https://doi.org/10.1016/j.agwat.2022.107720
Santamaría, C. L., & Hidalgo, H. E. (2017). Variabilidad de precipitación en la región costa de Ecuador. Investigación Agraria, 11(1), 43–52.
Shitsuka, R. & col. (2014). Matemáticas fundamentales para la tecnología. (2ª ed.). Editora Érica.
Torres, A., & Gómez, J. (2019). Análisis de evapotranspiración y su impacto en la producción de cítricos en la costa ecuatoriana. Revista Ciencia y Tecnología Agropecuaria, 20(2), 101–115. https://doi.org/10.21930/rcta.v20i2.135
Ugarte, D., Salcedo, P., & Espinoza, F. (2018). Efecto de las variables climáticas sobre la calidad de frutos cítricos en Ecuador. Revista Agropecuaria, 22(1), 55–68. https://doi.org/10.29244/agrop.22.1.55-68
Vallejo, D., Morales, R., & Quintero, F. (2020). Estimación de la evapotranspiración mediante modelos Hargreaves-Samani y Penman-Monteith en el valle del río Chone, Ecuador. Agronomía Mesoamericana, 31(2), 387–400. https://doi.org/10.15517/am.v31i2.42517
Vargas, F., Delgado, P., & Zambrano, G. (2019). Impacto del déficit hídrico sobre la producción y calidad de la mandarina. Revista de Ciencias Ambientales, 18(2), 79–90. https://doi.org/10.4067/S0718-34292019000200079
Vieira, S. (2021). Introducción a la bioestadística. Editorial GEN/Guanabara Koogan.
Villarroel, M., Molina, L., & Torres, F. (2021). Influencia del régimen hídrico en la fisiología y producción de cítricos. Scientia Agropecuaria, 12(1), 45–56. https://doi.org/10.17268/sci.agropecu.2021.01.05
Wang, L., Li, X., & Chen, Y. (2023). Influence of climate variability on citrus fruit growth and quality: A case study in Southeast China. Environmental Research, 226, 115620. https://doi.org/10.1016/j.envres.2023.115620
Zambrano, J. (2019). Evaluación del estándar de calidad en el manejo postcosecha de la mandarina (Citrus reticulata) en el sitio San Andrés del Cantón Chone, en el año 2019. https://repositorio.uleam.edu.ec/handle/123456789/2302
Zhang, X., Wang, Y., & Xu, L. (2020). Water productivity and yield response of mandarins to deficit irrigation in semi-arid regions. Agricultural Water Management, 234, 106128. https://doi.org/10.1016/j.agwat.2020.106128
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yerik Lexander Castro Taipe, Jandry Fabricio Rosado Quiroz, Marcos Javier Vera Vera, José Manuel Calderón Pincay

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
