Applications of artificial intelligence in magnetic resonance imaging for glioma diagnosis: Advances, techniques, and limitations

Authors

DOI:

https://doi.org/10.33448/rsd-v15i1.50182

Keywords:

Magnetic Resonance Spectroscopy, Gliomas, Artificial Intelligence.

Abstract

Introduction: Magnetic resonance imaging (MRI) is one of the main techniques used in the diagnosis of gliomas, but it has limitations in tumor differentiation and in predicting molecular markers. Artificial intelligence (AI) has emerged as a complementary tool, capable of increasing diagnostic accuracy and supporting clinical decisions. Method: A systematic review of articles published between 2015 and 2025 in the PubMed, MEDLINE, and SciELO databases was conducted. Methodological quality was assessed using the AMSTAR-2 tool. Results: DL and ML-based models showed promising performance, with accuracy exceeding 95% in some cases, especially convolutional neural networks (CNNs). Hybrid models integrating radiomic and clinical-molecular data showed better sensitivity and specificity in differentiating between low- and high-grade gliomas. However, limitations such as methodological heterogeneity, lack of standardization of imaging protocols, risk of overfitting, and lack of robust external validation still restrict large-scale clinical application. Discussion: AI has shown promise in automating complex image analyses, reducing subjective biases, and offering greater diagnostic accuracy. However, challenges persist regarding the standardization of protocols, the difficulty of compatibility between systems, and the transparency of algorithms, which are factors that hinder its clinical incorporation. Conclusion: The integration of AI in MRI represents a milestone in oncological neuroimaging, with great revolutionary potential in the diagnosis of gliomas. To safely include these techniques in clinical practice, multicenter studies, interpretable models, and policies that ensure ethical validation, reproducibility, and equitable accessibility are necessary.

References

Alhasan, A. S. (2021). Clinical Applications of Artificial Intelligence, Machine Learning, and Deep Learning in the Imaging of Gliomas: A Systematic Review. Cureus. 13(11):e19580. doi: 10.7759/cureus.19580. eCollection 2021 Nov.

Al-Rumaihi, G., Khan, M. M., Saleh, A., Ali, A., Al-Romaihi, L., Al-Jaber, N. et al. (2025). Performance Evaluation of Artificial Intelligence Techniques in the Diagnosis of Brain Tumors: A Systematic Review and Meta-Analysis. Cureus. 17(7):e88915. doi: 10.7759/cureus.88915. eCollection 2025 Jul.

Bonm, A. V., Ritterbusch, R., Throckmorton, P. & Graber, J. J. (2020). Clinical Imaging for Diagnostic Challenges in the Management of Gliomas: A Review. Journal of Neuroimaging. 30(2):139–45.

Brasil. (2020). Diretrizes diagnósticas e terapêuticas de tumor cerebral no adulto. http://conitec.gov.br/. https://www.gov.br/conitec/pt-br/midias/protocolos/publicacoes_ms/20201218_pcdt_tumor_cerebral_em_adulto_isbn.pdf.

Chen, X., Lei, J., Wang, S., Zhang, J. & Gou. L. (2024). Diagnostic accuracy of a machine learning-based radiomics approach of MR in predicting IDH mutations in glioma patients: a systematic review and meta-analysis. Front Oncol. 14:1409760. doi: 10.3389/fonc.2024.1409760. eCollection 2024.

Chilaca-Rosas, M. F., Contreras-Aguilar, M. T., Pallach-Loose, F., Altamirano-Bustamante, N. F., Salazar-Calderon, D. R., Revilla-Monsalve, C., et al. (2025). Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management. Sci Rep. 15(1):16113.

Crossetti, M. G. O. (2012). Revisão integrativa de pesquisa na enfermagem o rigor cientifico que lhe é exigido. Rev Gaúcha Enferm. 33(2):8-9. https://www.scielo.br/j/rgenf/a/9TrSVHTDtDGhcP5pLvGnt5n/?format=pdf&lang=pt.

De Maria, L., Ponzio, F., Cho, H., Sogen, K., Tsougos, I., Gasparini, M. et al. (2024). The Current Diagnostic Performance of MRI-Based Radiomics for Glioma Grading: A Meta-Analysis. J Integr Neurosci. 23(5).

Maia Jr., A. C. M. (2005). Avaliação da contribuição do estudo de perfusão por ressonância magnética para o diagnóstico pré-operatório de anaplasia em tumores supratentoriais com aspecto sugestivo de glioma sem impregnação pelo agente paramagnético na ressonância magnética convencional. Tese (Doutorado). Universidade Federal de São Paulo-Escola Paulista de Medicina.

Farahani, S., Hejazi, M., Moradizeyveh, S., Di Ieva, A., Fatemizadeh, E. & Liu, S. (2025). Diagnostic Accuracy of Deep Learning Models in Predicting Glioma Molecular Markers: A Systematic Review and Meta-Analysis. Diagnostics. 15(7):797.

Luo, J., Pan, M., Mo. K., Mao, Y., Zou, D. (2023). Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol. 91:110–23.

Mehmandoost, M., Konjin, F. T., Jajin, E. A., Fahim, F., Yazdani, S. O. (2024). A review on the applications of artificial intelligence and big data for glioblastoma multiforme management. Egyptian Journal of Neurosurgery. 39(1):51.

Ostrom, Q. T., Bauchet, L., Davis, F. G., Deltour, I., Fisher, J. L., Langer, C. E. et al. (2014). The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol. 16(7):896–913.

Pereira, A. S., Shitsuka, S. M., Parreira, F. J. & Shitsuka, R. (2020). Metodologia da pesquisa científica. Santa Maria. Editora da UFSM.

Risemberg, R. I. C., Wakin, M., & Shitsuka, R. (2026). A importância da metodologia científica no desenvolvimento de artigos científicos. E-Acadêmica, 7(1), e0171675. https://doi.org/10.52076/eacad-v7i1.675.

Shukla, G., Alexander, G. S., Bakas, S., Nikam, R., Talekar, K., Palmer, J. D. et al. (2017). Advanced magnetic resonance imaging in glioblastoma: a review. Chin Clin Oncol. 6(4):40–40.

Snyder H. (2019). Literature review as a research methodology: An overview and guidelines. J Bus Res. 104:333–9.

Sohn, C. K. & Bisdas, S. (2020). Diagnostic Accuracy of Machine Learning-Based Radiomics in Grading Gliomas: Systematic Review and Meta-Analysis. Contrast Media Mol Imaging. 2020:1–12.

Song, H. R., Gonzalez-Gomez, I., Suh, G. S., Commins, D. L., Sposto, R., Gilles, F. H. et al. (2010). Nuclear factor IA is expressed in astrocytomas and is associated with improved survival. Neuro Oncol. 12(2):122–32.

Tomás, A. & Pojo, M. (2025). PIK3CA Mutations: Are They a Relevant Target in Adult Diffuse Gliomas? Int J Mol Sci. 26(11):5276.

van Kempen, E. J., Post, M., Mannil, M., Witkam, R. L., ter Laan, M., Patel, A. et al. (2021). Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis. Eur Radiol. 31(12):9638–53.

Wang, J., Chen, Z. & Chen, J. (2023). Diagnostic value of MRI radiomics in differentiating high-grade glioma from low-grade glioma: A meta-analysis. Oncol Lett. 26(4):436.

Xu, J., Meng, Y., Qiu, K., Topatana, W., Li, S., Wei, C. et al. (2022). Applications of Artificial Intelligence Based on Medical Imaging in Glioma: Current State and Future Challenges. Front Oncol. 12:892056. doi: 10.3389/fonc.2022.892056. eCollection 2022.

Published

2026-01-31

Issue

Section

Health Sciences

How to Cite

Applications of artificial intelligence in magnetic resonance imaging for glioma diagnosis: Advances, techniques, and limitations. Research, Society and Development, [S. l.], v. 15, n. 1, p. e8815150182, 2026. DOI: 10.33448/rsd-v15i1.50182. Disponível em: https://rsdjournal.org/rsd/article/view/50182. Acesso em: 3 feb. 2026.