Comparative study between shear tests for determining the residual strength in a clay layer located in Paulista – PE

Authors

DOI:

https://doi.org/10.33448/rsd-v14i11.50194

Keywords:

Shear strength, Residual strength, Tests, Calcareous clay.

Abstract

The determination of soil shear strength constitutes one of the main challenges in geotechnical engineering, as it is a fundamental parameter for the design of safer and economically viable projects. In slope stability analyses, particularly those involving long-term displacements, the quantification of residual shear strength is crucial; this strength is typically determined through laboratory testing. Therefore, the present study aimed to conduct a literature review on the testing methods employed for obtaining the residual strength of soils. The investigation included the application of multiple reversal direct shear tests, polished interface direct shear tests, and torsional shear tests (ring shear) to assess the residual strength of a calcareous clay from a slope located in the municipality of Paulista, State of Pernambuco (PE). It was found that only the polished interface direct shear test resulted in divergent values compared to the other methods and the data reported in the specialized literature. In the multiple reversal test, the residual friction angle reached approximately 26°, while the ring shear test recorded 24,6º. These high friction angle values are intrinsically associated with the soil's mineralogical composition.

References

Almukashfi, A., Larsen, S. P., & Katić, N. (2024, June). Improving the reliability of sand-steel interface friction angle measurements based on the Ring Shear test. In Proceedings of the 7th International Conference on Geotechnical and Geophysical Site Characterization. vol. 18, p. 21.

Amali, N. P. G., Maduranga, H. R., & Weerasinghe, A. R. P. (2024). Experimental study on residual shear strength of soil using undrained ring shear apparatus. In B. Abolmasov et al. (Eds.), Progress in Landslide Research and Technology (Vol. 3, pp. 387–395). Springer. https://doi.org/10.1007/978-3-031-55120-8_28

Bishop, A. W., et al. (1971). A new ring shear apparatus and its application to the measurement of residual strength. Géotechnique, 21(4), 273–328.

Bocovich, C., & Rinehart, R. V. (2025). Determination of Undrained Residual Strength of Fine-Grained Soil. Geotechnical Testing Journal. https://doi.org/10.1520/GTJ20240040

Braga, F. V. A. (2014). Estimativa dos Parâmetros da Resistência do Solo ao Cisalhamento Através de Pedotransferência [Tese de Doutorado] Universidade Federal de Santa Maria.

Bressani, L. A., Flores, J. A., & Heidemann, M. (2014). Influência de Descontinuidades Geológicas na Estabilidade de uma Encosta em São José - SC. Revista Brasileira de Geologia de Engenharia e Ambiental, 3(1), 139–148.

Companhia Energética de São Paulo (CESP). (2009). Relatório LEC-006/09 – Mina de Ferro Carajás (CVRD) – Ensaios Geotécnicos em Amostras Indeformadas de Solo e de Rocha Extraídas das Cavas N4E, N4W e N5E. CESP.

Ćorluka, S., Rakić, D., Živanović, N., Djoković, K. & Đurić, T. (2024). A correlation relating the residual strength parameters to direct shear and ring shear results: Implications for slope stability analyses. Applied Sciences, 14(22), 10325. https://doi.org/10.3390/app142210325

Fang, C., Li, Y., Gu, C., & Xing, B. (2024). Effect of fine-grained particles and sensitivity analysis of physical indexes on residual strength of granite residual soils. Coatings, 14(105). https://doi.org/10.3390/coatings14010105

Kanji, M. A. (1969). Resistência ao cisalhamento ao longo de interfaces solo-rocha. Anais da 1ª Semana Paulista de Geologia Aplicada (Vol. 3). ABGE.

Kanji, M. A. (1998). Determinação de ϕres de solos argilosos por ensaios de cisalhamento direto de interface lisa. Anais do 11º Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica (pp. 713–719). ABMS.

Kenney, T. C. (1977). Residual strengths of mineral mixtures. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering (Vol. 1, pp. 155–160). ISSMGE.

Lupini, J. F. (1981). The relationship between residual strength and soil plasticity. Géotechnique, 31(2), 273–281.

Lupini, J. F., Skinner, A. E., & Vaughan, P. R. (1981). The drained residual strength of cohesive soils. Géotechnique, 31(2), 181–213. https://doi.org/10.1680/geot.1981.31.2.181

Marinho, F. A. M. (2013). Parâmetros de resistência ao cisalhamento para estudos de encostas e taludes: Ensaios de laboratório. Anais da 6ª Conferência Brasileira de Encostas (pp. 119–134). ABMS.

Mesri, G., & Shakoor, A. (1998). Shear strength of soft clay. Journal of Geotechnical and Geoenvironmental Engineering, 124(8), 779–786.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria: Editora da UFSM

Pinto, C. S. (2006). Curso básico de mecânica dos solos (3ª ed.). Oficina de Textos.

Ribeiro Júnior, I. (2012). Notas de aula de Mecânica dos Solos. [Disponível em: http://files.ilcoribeiro.webnode.com.br/200000124-ee4faef496/Aula%2008_Resistencia%20o%20cisalhamento%20dos%20solos.pdf].

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.

Salomon, D. V. (2004). Como fazer uma monografia (11ª ed.). Martins Fontes.

Scariot, K. A. L. (2018). Estudo Paramétrico da resistência ao cisalhamento de um solo de baixa capacidade de suporte [Dissertação de Mestrado]. Universidade Federal de Campina Grande.

Silva, M. M. (2003). Caracterização geotécnica de um solo de calcário da Encosta Continental/PE-18, Paulista-PE com ênfase na resistência ao cisalhamento [Dissertação de Mestrado]. Universidade Federal de Pernambuco.

Skempton, A. W. (1964). Long-term stability of clay slopes. Géotechnique, 14(2), 77–102.

Skempton, A. W. (1970). First-time slides in over-consolidated clays. Géotechnique, 20(3), 320–324.

Skempton, A. W. (1985). Residual strength of clays in landslides, folded strata and the laboratory. Géotechnique, 35(1), 3–18.

Teles, G. L. V. (2013). Estudo sobre os parâmetros de resistência e deformabilidade da areia de Hokksund [Monografia de Graduação]. Universidade Federal do Rio de Janeiro.

Tiwari, B., & Ajmera, B. (2023). Advancements in Shear Strength Interpretation, Testing, and Use for Landslide Analysis. In: Alcántara-Ayala, I., et al. Progress in Landslide Research and Technology, 2(2),, 2023. Progress in Landslide Research and Technology. Springer, Cham. https://doi-org.ez16.periodicos.capes.gov.br/10.1007/978-3-031-44296-4_1

Tiwari, B., & Marui, H. (2003). Estimation of residual shear strength for bentonite–kaolin–Toyoura sand mixture. Landslide Research and Risk Reduction, 40(2), 124–133.

Tiwari, B., & Marui, H. (2005). A new method for the correlation of residual shear strength of the soil with mineralogical composition. Journal of Geotechnical and Geoenvironmental Engineering, 131(9), 1139–1150. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1139)

Vargas, M. (1977). Introdução à Mecânica dos Solos. EDUSP.

Victorino, M. M. (2015). Influência da chuva nas poropressões e estabilidade dos taludes rodoviários de um trecho da BR 376 na serra do mar paranaense [Dissertação de Mestrado]. Universidade Federal do Paraná.

Won, J.-Y., & Minozzo, M. (2025). Friction Corrections for Small-Scale Direct Shear, Residual Shear, and Interface Shear Box Tests. Geotechnical Testing Journal, 48(1), 68–79. https://doi.org/10.1520/GTJ20240039

Published

2025-11-25

Issue

Section

Engineerings

How to Cite

Comparative study between shear tests for determining the residual strength in a clay layer located in Paulista – PE. Research, Society and Development, [S. l.], v. 14, n. 11, p. e218141150194, 2025. DOI: 10.33448/rsd-v14i11.50194. Disponível em: https://rsdjournal.org/rsd/article/view/50194. Acesso em: 5 dec. 2025.