Potential of Trichoderma asperellum against root-rot caused by Fusarium equiseti in tomato plants

Authors

DOI:

https://doi.org/10.33448/rsd-v14i12.50223

Keywords:

Biological control, Fungal infections, Fusarium equiseti, Solanum lycopersicum, Plant-growth promoting.

Abstract

The aim of this study was to evaluate the effects of Trichoderma asperellum, Rhizolex-T (a chemical fungicide), and their combinations with Fusarium equiseti on fruit yield and disease inhibition in plants. Trichoderma asperellum and Fusarium equiseti were isolated from the soil surrounding robust tomato roots in various parts of Brazil, and molecularly identified by 5.8S-ITS region sequencing. The biocontrol agent T. asperellum exhibited strong antagonistic activity, surpassing the efficacy of the chemical fungicide Rhizolex-T. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis confirmed that most T. asperellum exhibited potent antagonistic activity in terms of mechanistic insights. Fresh fruit weight increased by 14.70%, dry fruit weight increased by 14.81%, fruit size increased by 3.75%, and the number of fruits per plant increased by 12.50% as a consequence of the application of T. asperellum (T). Additionally, antioxidant activity and total phenol contents increased in response to T. asperellum treatment. These results highlight the potential of T. asperellum as a sustainable, eco-friendly alternative to chemical fungicides for managing Fusarium wilt in tomatoes. The study advocates for the integration of biocontrol agents into disease management strategies to reduce chemical inputs and promote sustainable agriculture.

References

Abdel-Monaim, M., Abdel-Gaid, M. & El-Morsy, M. (2012). Efficacy of rhizobacteria and humic acid for controlling Fusarium wilt disease and improvement of plant growth, quantitative and qualitative parameters in tomato. Journal of Plant Pathology, 1, 39–48. https://doi.org/10.33687/phytopath.001.01.0014

Ahanger, M.A., Tyagi, S.R., Wani, M.R. & Ahmad, P. (2013). Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment: v. 1, Springer, 25–55.

Ainsworth, E.A. & Gillespie, K.M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature protocols, 2(32), 875–877. https://doi.org/10.1038/nprot.2007.102

Ajenifujah-Solebo, S.O., Akin-Idowu, P.E., Aduloju, A.O., Adedeji, V.O., Akinyode, E.T., Ibitoye, D.O., Arogundade, O., Oke, A.O., Adesegun, E.A. & Ntui, V.O. (2025). Tomato crop improvement efforts in Nigeria: Past, Current and Future Perspectives.

Ajilogba, C.F., Babalola, O.O., & Ahmad. F. (2013). Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Studies on Ethno-Medicine, 7, 205–216. https://doi.org/10.1080/09735070.2013.11886462

Akber, M.A. & Fang, X. (2024). Research progress on diseases caused by the soil-borne fungal pathogen Rhizoctonia solani in alfalfa. Agronomy, 14(7), 14–83. https://doi.org/10.3390/agronomy14071483

Al-Surhanee, A.A. (2022). Protective role of antifusarial eco-friendly agents (Trichoderma and salicylic acid) to improve resistance performance of tomato plants. Saudi Journal of Biological Sciences, 29(4), 2933–2941. https://doi.org/10.1016/j.sjbs.2022.01.020

Alhaithloul, H.A., Soliman, M.H., Ameta, K.L., El-Esawi, M.A. & Elkelish, A. (2019). Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseus subjected to drought and heat stress. Biomolecules, 10(1), 43–52. https://doi.org/10.3390/biom10010043

Ali, S., Ganai, B.A., Kamili, A.N., Bhat, A.A., Mir, Z.A., Bhat, J.A., Tyagi, A., Islam, S.T., Mushtaq, M., & Yadav, P. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiology Research, 212, 29–37. https://doi.org/10.1016/j.micres.2018.04.008

Anees, M., Tronsmo, A., Edel-Hermann, V., Hjeljord, L.G., Héraud, C., & Steinberg, C. (2010). Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal biology, 114, 691–701. https://doi.org/10.1016/j.funbio.2010.05.007

Awad-Allah, E.F., Shams, A.H., &Helaly, A.A. (2021). Suppression of bacterial leaf spot by green synthesized silica nanoparticles and antagonistic yeast improves growth, productivity and quality of sweet pepper. Plants, 10(8), 1–16. https://doi.org/10.3390/plants10081689

Awal, M.A., Abdullah, N.S., Prismantoro, D., Dwisandi, R.F., Safitri, R., Mohd-Yusuf, Y., Mohd Suhaimi, N.S. & Doni F. (2024). Mechanisms of action and biocontrol potential of Trichoderma against Fusarium in horticultural crops. Cogent Food & Agriculture, 10(1). https://doi.org/10.1016/j.ecocom.2021.100978

Bodah, E.T. (2017). Root rot diseases in plants: a review of common causal agents and management strategies. Agriculture Research & Technology, 5(3), 555661. https://doi.org/10.19080/ARTOAJ.2017.05.555661

Cardinali, A., & Nason, G.P. (2013). Costationarity of locally stationary time series using costat. Journal of Statistical Software, 55(1), 1–22. https://doi.org/10.18637/jss.v055.i01

Costa Neto, P.L.O. & Bekman, O.R. (2009). Análise estatística da decisão. Editora Edgard Blucher.

Danthini, K.M.P., Senthil-Nathan, S., Soranam, R., Thanigaivel, A., Karthi, S., Sreenath Kumar, C., Kingsley, S.J. & Kanagaraj Murali-Baskaran, R. (2018). Bacterial compounds, as biocontrol agent against early blight (Alternaria solani) and tobacco cut worm (Spodoptera litura Fab.) of tomato (Lycopersicon esculentum Mill.). Archives of Phytopathology and Plant Protection, 51(13), 729–753. https://doi.org/10.1080/03235408.2018.1496525

Dai, G., Andary, C., Cosson-Mondolot, L. & Boubals, D. (1993). Polyphenols and resistance of grapevines o downy mildew. International Symposium on Natural Phenols in Plant Resistance 381.

Davet, P. & Rouxel, F. (2000) Detection and isolation of soil fungi. Science Publishers, Inc. Dube, J., Ddamulira, G. & Maphosa, M. (2020). Tomato breeding in sub-Saharan Africa-Challenges and opportunities: A review. African Crop Science Journal, 28(1), 131–140.

Dutta, P., Mahanta, M., Singh, S.B., Thakuria, D., Deb, L., Kumari, A., Upamanya, G.K., Boruah, S., Dey, U. & Mishra A. (2023). Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. Frontiers Plant Science, 14(1), 1–22. https://doi.org/10.3389/fpls.2023.1145715

El-Khallal, S.M. (2007). Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (Arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid): 1-Changes in growth, some metabolic activities and endogenous hormones related to defense mechanism. Australian Journal of Basic Applied Science, 1, 691–705.

El-Sobky, M., Fahmi, A., Eissa, R. & El-Zanaty, A. (2019). Genetic characterization of Trichoderma spp. isolated from different locations of Menoufia, Egypt and assessment of their antagonistic ability. Journal of Microbiology and Biochemistry and Technology, 11, 1–12. https://doi.org/10.4172/1948-5948.1000409

Elansky, A., Mislavskiy, S., Chudinova, E., Kokaeva, L.Y., Elansky, S., Denisova, E., Ilichev, I., Belosokhov, A., Bamutaze, Y. & Musinguzi, P. (2024). Fusarium species affecting potato tubers and tomato fruits in Uganda. Mycology and Phytopathology, 58, 161–172. https://doi.org/10.31857/S0026364824020077

Elkelish, A.A., Alhaithloul, H.A.S., Qari, S.H., Soliman, M.H. & Hasanuzzaman, M. (2020). Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms. Environmental and Experimental Botany, 17, 103946. https://doi.org/10.1016/j.envexpbot.2019.103946

Elshahawy, I., Abouelnasr, H.M., Lashin, S.M. & Darwesh, O.M. (2018). First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. Journal of Plant Protection Research, 58, 137–151. https://doi.org/10.24425/122929

Elshahawy, I., Saied, N., Abd-El-Kareem, F. & Abd-Elgawad, M. (2024). Enhanced activity of Trichoderma asperellum introduced in solarized soil and its implications on the integrated control of strawberry- black root rot. Heliyon, 10(17) 1–15. https://doi.org/10.1016/j.heliyon.2024.e36795

Elshahawy, I.E. & Marrez, D.A. (2024). Antagonistic activity of Trichoderma asperellum against Fusarium species, chemical profile and their efficacy for management of Fusarium‐root rot disease in dry bean. Pest Management Science, 80(3), 1153–1167. https://doi.org/10.1002/ps.7846

Farrag, A., Attia, M.S., Younis, A. & Abd Elaziz, A. (2017). Potential impacts of elicitors to improve tomato plant disease resistance. Italian Journal of Agronomy, 16(9), 311–321. https://doi.org/10.4081/ija.2021.1883

Figlan, S., Ntushelo, K., Mwadzingeni, L., Terefe, T., Tsilo, T.J. & Shimelis, H. (2020). Breeding wheat for durable leaf rust resistance in Southern Africa: variability, distribution, current control strategies, challenges and future prospects. Frontiers Plant Science, 11(2), 1–13. https://doi.org/10.3389/fpls.2020.00549

Filizola, P.R.B., Luna, M.A.C., Souza, A.F., Coelho, I.L., Laranjeira, D. & Campos-Takaki, G.M. (2019). Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and potential of biocontrol against Fusarium strains. Microbial Cell Factories, 89(3), 1–14. https://doi.org/10.1186/s12934-019-1108-y

Gowtham, H., Hem,a P., Murali, M., Shilpa, N., Nataraj, K., Basavaraj, G., Singh, S.B., Aiyaz, M., Udayashankar, A. & Amruthesh, K.N. (2024). Fungal endophytes as mitigators against biotic and abiotic stresses in crop plants. Journal of Fungi 10(2), 1–34. https://doi.org/10.3390/jof10020116

Hamza, A., Mohamed, A. & Derbalah, A. (2016). Unconventional alternatives for control of tomato root rot caused by Rhizoctonia solani under greenhouse conditions. Journal of Plant Protection Research, 56(3), 298–305. https://doi.org/10.1515/jppr-2016-0046

Harman, G.E. (2011). Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytologist, 189(3), 647–649. https://doi.org/10.1111/j.1469-8137.2010.03614.x

Hashem, A., Abd_Allah, E.F., Alqarawi, A.A., Al-Huqail, A.A., Wirth, S. & Egamberdieva, D. (2016). The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers Microbiology, 7(1), 1–15. https://doi.org/10.3389/fmicb.2016.01089

Hasna, M.K., Paul. N.R., Haque, M.M., Bir, M.S.H., Ali, M.A. & Chong, K.P. (2025). Biocontrol efficacy of Trichoderma asperellum against fusarium wilt in tomato plants by induction of the host defense genes. Discover Plants, 2, 1–9. https://doi.org/10.1007/s44372-025-00224-1

Hassan, M.M., Farid, M.A. & Gaber, A. (2019). Rapid identification of Trichoderma koningiopsis and Trichoderma longibrachiatum using sequence-characterized amplified region markers. Egyptian Journal of Biological Pest Control, 29, 1–8. https://doi.org/10.1186/s41938-019-0113-0

Hermosa, R., Rubio, M.B., Cardoza, R.E., Nicolás, C., Monte, E. & Gutiérrez, S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. International of Microbiology, 16(3), 69–80.

Hesham, A.E.L., Mohamed, E.A., Mawad, A.M., Elfarash, A., El-Fattah, A., Bahaa, S. & El-Rawy, M. (2017). Molecular characterization of degrades a mixture of low and high molecular weight polycyclic aromatic hydrocarbons. Open Biotechnology Journal, 11, 27–35. https://doi.org/10.2174/1874070701711010027

Hu, G., Zhao, Z., Wei, Y., Hu, J., Zhou, Y., Li, J. & Yang, H. (2025). Trichoderma asperellum 22043: Inoculation promotes salt tolerance of tomato seedlings through activating the antioxidant system and regulating stress-resistant genes. Journal of Fungi, 11(4), 1–12. https://doi.org/10.3390/jof11040253

Joseph, L.A., Sousa, K.A.O., Chagas Junior, A.F. & Luc, F. (2022). Compatibility of fungicides with Trichoderma asperelloides and Azospirillum brasilense. Revista Scientia Agraria Paranaensis, 21(1), 30–35. https://doi.org/10.18188/sap.v21i1.29155

Joseph, L.A., Jean, M., Mial, F., Fragélus, K., Jean, K.V., & Fils-aimé, F. (2023). Avaliação do efeito de pesticidas sobre o crescimento do Beauveria bassina. Research, Society and Development, 12(4), 1–9. https://doi.org/10.33448/rsd-v12i14.44676

Joseph, L.A., Lima, N.M.P., Rocha, P.A.L., Chagas Júnior, A.F., Rocha, J.P.L., Pereira, J.S., Martins, A.O., Moraes, C.B., Oliveira, L.M.R., Araújo, W.L., Sarmento, M.I. & Sarmento, R.A. (2025a). Morphological responses of Eucalyptus demonstrate the potential of Trichoderma harzianum to promote resistance against Leptocybe invasa. Brazilian Journal of Microbiology, 56(1), 1–12. https://doi.org/10.1007/s42770-025-01704-y

Joseph, L.A. (2025b). Recent advances in the applications of endophytic Trichoderma spp. for biocontrol and plant growth promotion. Mycological Progress, 24(51), 1–12. https://doi.org/10.1007/s11557-025-02071-6

Joseph, L.A., Jean, M., Appolon, I., Pierre, J., Jean, K.V., Fils-aimé, F. & Uana, B.G. (2025c). Trichoderma harzianum UFT-25 and its relationship with the promotion of Eucalyptus plant growth. Research, Society and Development, 14(2), 1–10. https://doi.org/10.33448/rsd-v14i2.48253

Karimov, H., Azimova, N., Khaytbayeva, N., Kobilov, F., Khamidova, K., Shukurov, O. & Razzokov, J. (2024). Isolation of antagonistic bacterial strains against fungi. Ecology and Evolution, 15(7), 782–788. https://doi.org/10.1002/ece3.71628

Kashyap, P.L., Solanki, M.K., Kushwaha, P., Kumar, S. & Srivastava, A.K. (2020). Biocontrol potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment. Soil Science and Plant Nutrition, 20, 160–176. https://doi.org/10.1007/s42729-019-00114-y

Khan, M.R., Hajihassani, A., Briar, S.S. & Withanage, D.P. (2025). Fungus–nematode root-rot disease complex. In Nematode Disease Complexes in Agricultural Crops, 122–141.

Khan, S.A., Hamayun, M., Kim, H.Y., Yoon, H.J., Seo, J.C., Choo, Y.S., Lee, I.J., Kim, S.D., Rhee, I.K. & Kim, J.G. (2009). A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnology Letters, 31, 283–287. https://doi.org/10.1007/s10529-008-9862-7

Kitts, D.D., Wijewickreme, A.N. & Hu, C. (2000). Antioxidant properties of a North American ginseng extract. Molecular Cell & Biochemistry, 203, 1–10.

Köhl, J., Kolnaar, R. & Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers Plant Science, 1–17. https://doi.org/10.1016/j.jafr.2024.101421

Kumari, N. & Katoch, S. (2020). Wilt and root rot complex of important pulse crops: their detection and integrated management. Management of Fungal Pathogens in Pulses: Current Status and Future Challenges, 93–119.

Latz, M.A., Jensen, B., Collinge, D.B. & Jorgensen, H.J. (2018). Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecology & Diversity 11(6), 555–567. https://doi.org/10.1080/17550874.2018.1534146

Liu, P., Yang, R., Wang, Z., Ma, Y., Ren, W., Wei, D. & Ye, W. (2024). Biocontrol potential of Trichoderma asperellum CMT10 against strawberry root rot disease. Horticulturae, 10, 1–16. https://doi.org/10.3390/horticulturae10030246

Manoharmayum, D.D., Harikumar, I., Pallathadka, P. & Roy, P.D. (2025). Eco-friendly approaches to disease management in horticulture: Integrating biological control and organic practices. Journal of Neon Surgery, 14, 507–536. https://doi.org/10.63682/jns.v14i17S.4587

Marzano, M., Gallo, A. & Altomare, C. (2013). Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum sp. lycopersici through UV-induced tolerance to fusaric acid. Biological Control, 67(3), 397–408. https://doi.org/10.1016/j.biocontrol.2013.09.008

Mazrou, Y.S., Makhlouf, A.H., Elseehy, M.M., Awad, M.F. & Hassan, M.M. (2020). Antagonistic activity and molecular characterization of biological control agent Trichoderma harzianum from Saudi Arabia. Egyptian Journal of Biological Pest Control, 30(11), 1–8. https://doi.org/10.1186/s41938-020-0207-8

Mogazy, A.M., Abdallah, W.E., Mohamed, H.I. & Omran, A.A. (2024). The efficacy of chemical inducers and fungicides in controlling tomato root rot disease caused by Rhizoctonia solani. Plant Physiology and Biochemistry, 210, 108669. https://doi.org/10.1016/j.plaphy.2024.108669

Mona, S.A., Hashem, A., Abd Allah, E.F., Alqarawi, A.A., Soliman, D.W.K., Wirth, S. & Egamberdieva, D. (2017). Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture, 16(8), 1751–1757. https://doi.org/10.1016/S2095-3119(17)61695-2

Morris, J.K. (1965). A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology, 27, 1–12.

Muhorakeye, M.C., Namikoye, E.S., Khamis, F.M., Wanjohi, W. & Akutse, K.S. (2024). Biostimulant and antagonistic potential of endophytic fungi against fusarium wilt pathogen of tomato Fusarium oxysporum sp. lycopersici. Scientific Reports, 14, 1–17. https://doi.org/10.1038/s41598-024-66101-1

Nicastro, R. & Carillo, P. (2021). Food loss and waste prevention strategies from farm to fork. Sustainability, 13(10), 1–23. https://doi.org/10.3390/su13105443

Nilsson, R.H., Kristiansson, E., Ryberg, M., Hallenberg, N., Larsson, K.H. (2008). Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics, 4(1), S653. https://doi.org/10.4137/ebo.s653

Nirmaladevi, D., Venkataramana, M., Srivastava, R., Uppalapati, S., Gupta, V.K., Yli-Mattila, T., Clement, Tsui, K., Srinivas, C., Niranjana, S. & Chandra, N.S. (2016). Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum sp. lycopersici. Scientific Reports, 6(3), 1–14. https://doi.org/10.1038/srep21367

Nofal, A., El-Rahman, M., Abdelghany, T. & Abd El-Mongy, M. (2021). Mycoparasitic nature of Egyptian Trichoderma isolates and their impact on suppression Fusarium wilt of tomato. Egyptian Journal of Biological Pest Control, 31(1), 1–8. https://doi.org/10.1186/s41938-021-00450-1

Nunes, T.V., Rodrigues, J.N., Pinto, I.O., Pimenta, R.S., Sarmento, M.I., Silva, R.S., Souza, P.G.C., De Souza, D.J., Joseph, L.A., Souza, M.L.O. & Sarmento, R.A. (2023). Endophytic development of the entomopathogenic fungus Beauveria bassiana reduced the development of galls and adult emergence of Leptocybe invasa in susceptible Eucalyptus. Sustainability, 15(3), 1–13. https://doi.org/10.3390/su152316411

Ochilo, W.N., Nyamasyo, N., Kilalo, D., Otieno, W., Otipa, M., Chege, F., Karanja, T. & Lingeera, E.K. (2019). Characteristics and production constraints of smallholder tomato production in Kenya. Science African, 2, e00014.

Olaoluwa, F.D., Omotayo, O.E. & Akanmu, A.O. (2024). Biocontrol potentials of Trichoderma species in the control of Fusarium wilt in five tomatoes (Lycopersicon esculentum L.) varieties cultivated under greenhouse conditions in Southwest Nigeria. Nigerian Aca Science, 17, 6–21. https://doi.org/10.57046/xznh3101

Olowe, O.M., Akanmu, A.O. & Asemoloye, M.D. (2020). Exploration of microbial stimulants for induction of systemic resistance in plant disease management. Annals of Applied Biology, 177(3), 282–293. https://doi.org/10.1111/aab.12631

Ons, L., Bylemans, D., Thevissen, K. & Cammue, B.P. (2020). Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms, 8, 1–19. https://doi.org/10.3390/microorganisms8121930

Panabieres, F., Marais, A., Trentin, F., Bonnet, P. & Ricci, P, (1989). Repetitive DNA polymorphism analysis as a tool for identifying Phytophthora species. Phytopathology, 79(2), 1105–1109. https://doi.org/10.1016/S0953-7562(09)80236-0

Parejo, I., Codina, C., Petrakis, C. & Kefalas, P. (2000). Evaluation of scavenging activity assessed by Co (II)/EDTA-induced luminol chemiluminescence and DPPH·(2,2-diphenyl-1-picrylhydrazyl) free radical assay. Journal of Pharmacological and Toxicological Methods, 44(3), 507–512. https://doi.org/10.1016/S1056-8719(01)00110-1

Patel, S. & Saraf, M. (2017). Biocontrol efficacy of Trichoderma asperellum MSST against tomato wilting by Fusarium oxysporum sp. lycopersici. Archives of Phytopathology and Plant Protection, 50(6), 228–238. https://doi.org/10.1080/03235408.2017.1287236

Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria: Editora da UFSM.

Petrov, N.M., Stoyanova, M.I. & Gaur, R. (2024). Viruses as stress Factors and their management in vegetable crops. In Molecular Dynamics of Plant Stress and its Management, Springer, 331–350.

Radjacommare, R., Venkatesan, S. & Samiyappan, R. (2010). Biological control of phytopathogenic fungi of vanilla through lytic action of Trichoderma species and Pseudomonas fluorescens. Archives of Phytopathology and Plant Protection, 43(1), 1–17.

Ramírez-Cariño, H.F., Guadarrama-Mendoza, P.C., Romero-Cortes, T., Cuervo-Parra, J.A. & Valadez Blanco, R. (2025). Exploring the Potential Benefits of Trichoderma Species in Agro-Industrial Crop Production. Fungal Endophytes Volume II: Applications in Agroecosystems and Plant Protection, 255–293.

Redda, E.T., Ma, J., Mei, J., Li, M., Wu, B. & Jiang, X. (2018). Antagonistic potential of different isolates of Trichoderma against Fusarium oxysporum, Rhizoctonia solani, and Botrytis cinerea. European Journal of Experimental Biology, 8(1), 1–8. https://doi.org/10.21767/2248-9215.100053

Reynolds, E.S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology, 17, 208–219. https://doi.org/10.1083/jcb.17.1.208

Rinu, K., Sati, P. & Pandey, A. (2014). Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. Journal of Basic Microbiology, 54(5), 408–417. https://doi.org/10.1002/jobm.201200579

Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Saldaña-Mendoza, S.A., Pacios-Michelena, S., Palacios-Ponce, A.S., Chávez-González, M.L. & Aguilar, C.N. (2023). Trichoderma as a biological control agent: mechanisms of action, benefits for crops and development of formulations. World Journal of Microbiology and Biotechnology, 39, 1–15. https://doi.org/10.1007/s11274-023-03695-0

Sallam, N., Abd Elrazik, A., Hassan, M. & Koch, E. (2009). Powder formulations of Bacillus subtilis, Trichoderma spp. and Coniothyrium minitans for biocontrol of onion white Rot. Archives of Phytopathology and Plant Protection, 42, 142–147. https://doi.org/10.1080/03235400600982675

Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W., Consortium, F.B., List, F.B.C.A. & Bolchacova, E. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS, 109, 6241–6246. https://doi.org/10.1073/pnas.1117018109

Selva Amala, A., Parthiban, V., Sudha, A., Gopalakrishnan, C., Swarnakumari, N. &Anandham, R. (2024). Antifungal and plant-growth promoting potency of Trichoderma asperellum against Fusarium wilt on tomato. Journal of Plant Pathology, 1–13. https://doi.org/10.1007/s42161-024-01736-7

Seo, C.W., Yoo, S., Cho, Y., Kim, J.S., Steinegger, M. & Lim, Y.W. (2025). FunVIP: fungal validation and identification pipeline based on phylogenetic analysis. Journal of Microbiology, 63(4), 1–13. https://doi.org/10.71150/jm.2411017

Sharma, I.P. & Sharma, A.K. (2020). Trichoderma–Fusarium interactions: A Biocontrol strategy to manage wilt. In Trichoderma: Host Path Interact applications, Springer, 167–185.

Sharma, J., Kumar, S. & Bikash, D. (2012). Soil application of Trichoderma harzianum and T. viride on biochemical constituents in bacterial wilt resistant and susceptible cultivars of tomato. Frontiers Microbiology, 65, 264–267. https://doi.org/10.3389/fmicb.2024.1366690

Sheoran, A.R., Lakra, N., Saharan, B.S., Luhach, A., Kumar, R., Seth, C.S. & Duhan, J.S. (2025). Enhancing plant disease resistance: insights from biocontrol agent strategies. Journal of Plant Growth Regulation, 44, 436–459. https://doi.org/10.1007/s00344-024-11480-y

Shitsuka, R. et al. (2014). Matemática fundamental para a tecnologia. (2ed). Editora Érica.

Shoresh, M., Harman, G.E. & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annals Review of Phytopathology, 48, 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450

Singh, M., Chauhan, A. & Singh, P.K. (2024). Enhanced growth and suppression of Fusarium wilt in tomato plants through the action of Rhizophagus intraradices and Trichoderma viride. Vegetos, 2, 1515–1522. https://doi.org/10.1007/s42535-024-00935-y

Sorahinobar, M., Eslami, S., Shahbazi, S. &Najafi, J. (2025). A mutant Trichoderma harzianum improves tomato growth and defense against Fusarium wilt. European Journal of Plant Pathology, 172, 169–184. https://doi.org/10.1007/s10658-024-02992-0

Sushma, S.R., Kolar, A., Taj, S.A., Jainab, S.B., Tariq, N.M., Saravanamoorthy, M., Mariappan, C., Almansour, A.I., Djearamane, S. & Wong, L.S. (2024). Identification of antimicrobial compounds from the plant growth promoting bacteria (PGPR) tested against Fusarium wilt of tomato caused by Fusarium oxysporum sp. Lycopersici. Journal of King Saud University-Science, 36, 103–227. https://doi.org/10.1016/j.jksus.2024.103227

Tamura, K., Stecher, G. & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolutionary, 38, 3022–3027. https://doi.org/10.1093/molbev/msab120

Tarkowski, L.P., Signorell, S. & Höfte, M. (2020). γ‐Aminobutyric acid and related amino acids in plant immune responses: emerging mechanisms of action. Plant, Cell & Environment, 43(5), 1103–1116. https://doi.org/10.1111/pce.13734

Thangaraj, P., Balamurali, A.S., Muthusamy, N. (2025). Biological control of Trichoderma spp.: Mechanisms of action against phytopathogens, insect pests, and its multifaceted roles in agro-ecosystems. Environment Conservation, 26, 302–314. https://doi.org/10.36953/ECJ.28922909V

Tkalenko, H., Borzykh, O., Horal, S., Barvas-Hremiakova, K. & Janse, L. (2020). Screening new Trichoderma isolates for antagonistic activity against several phytopathogenic fungi, including Fusarium spp. Agricultural Science and Practice, 7, 14–25. https://doi.org/10.15407/agrisp7.03.014

Trotta, V., Russo, D., Rivell, A.R., Battaglia, D., Bufo, S.A., Caccavo, V., Forlano, P., Lelario, F., Milella, L. & Montinaro, L. (2024). Wastewater irrigation and Trichoderma colonization in tomato plants: effects on plant traits, antioxidant activity, and performance of the insect pest Macrosiphum euphorbiae. Environmental Science and Pollution Research, 31, 18887–18899. https://doi.org/10.1007/s11356-024-32407-w

Villalobos‐Escobedo, J.M., Esparza‐Reynoso, S., Pelagio‐Flores, R., López‐Ramírez, F., Ruiz‐Herrera, L.F., López‐Bucio, J. & Herrera‐Estrella, A. (2020). The fungal NADPH oxidase is an essential element for the molecular dialog between Trichoderma and Arabidopsis. Journal of Plant, 103, 2178–2192. https://doi.org/10.1111/tpj.14891

White, T.J., Bruns, T., Leem, S. & Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Gelfandm, M.A.D.H., Gelfand, J., Sninsky, J. & White, T. (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, 315–322.

Yedidia, I., Srivastva, A.K., Kapulnik, Y. & Chet, I. (2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil, 235, 235–242. https://doi.org/10.1023/A:1011990013955

Zaheer, I.E., Ali, S., Saleem, M.H., Imran, M., Alnusairi, G.S., Alharbi, B.M., Riaz, M., Abbas, Z., Rizwan, M., Soliman, M.H. (2020). Role of iron–lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater. Plant Physiology and Biochemistry, 155, 70–84. https://doi.org/10.1016/j.plaphy.2020.07.034

Zheng, F., Fu, Y., Yu, P., Qin, C., Guo, T., Xu, H., Chen, J., Ahammed, G.J., Liu, A. & Chen, S. (2024). Flavonoid synthesis is crucial for Trichoderma asperellum-induced systemic resistance to root-knot nematodes in tomato plants. Plant Physiology and Biochemistry, 212(1), 1–14. https://doi.org/10.1016/j.plaphy.2024.108706

Downloads

Published

2025-12-07

Issue

Section

Agrarian and Biological Sciences

How to Cite

Potential of Trichoderma asperellum against root-rot caused by Fusarium equiseti in tomato plants. Research, Society and Development, [S. l.], v. 14, n. 12, p. e62141250223, 2025. DOI: 10.33448/rsd-v14i12.50223. Disponível em: https://rsdjournal.org/rsd/article/view/50223. Acesso em: 15 dec. 2025.