Mancozeb inclusion complex with (2-hydroxypropyl)-β-cyclodextrin: A search of articles and patents

Authors

DOI:

https://doi.org/10.33448/rsd-v14i12.50300

Keywords:

Cyclodextrins, Mancozeb, Inclusion complex, HP-β-CD, Agrochemical formulations.

Abstract

Mancozeb is a broad-spectrum fungicide widely used in agriculture; however, its poor water solubility limits its operational efficiency and increases environmental impact. Cyclodextrins, particularly 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), have emerged as promising carriers capable of enhancing the solubility, stability, and agronomic performance of poorly soluble active ingredients. This article presents a technological prospecting study covering scientific publications and patents, focusing on inclusion complex formation, analytical evidence of molecular interactions, and potential applications in agrochemical formulations. The findings reveal a significant gap in the literature regarding the mancozeb/HP-β-CD inclusion complex, highlighting the innovative potential of this strategy for developing more efficient and environmentally friendly formulations.

References

Crini, G. (2014). Review: Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 39, 442-484.

Daqa, W. M., Alshoaibi, A., Ahmed, F., & Rao, T. N. (2022). Synthesis and Characterization of Nanoformulation of the Broad-Spectrum Enzyme Inhibitor Mancozeb by Polyethylene Glycol Capping and Its Dissipation Kinetics in Water Using TiO2 Nanoparticles. Processes, 10(12), 2733.

Fouda-Mbanga, B. G., Tywabi-Ngeva, Z., Badawy, W. M., Ebite, C., Onotu, O. P., Abogidi, C., Uzordinma, A. P., & Kaba, S. (2025). Green cyclodextrins-derivatives for sustainable remediation of pesticides and heavy metals: A review. Journal of Molecular Structure, 1328, 141326.

Flaherty, R. J., Nshime, B., DeLaMarre, M., DeJong, S., Scott, P., & Lantz, A. W. (2013). Cyclodextrins as complexation and extraction agents for pesticides from contaminated soil. Chemosphere, 91(7), 912-920.

Gündel, S., dos Reis, T. R., Copetti, P. M., Favarin, F. R., Sagrillo, M. R., da Silva, A. S., Segat, J. C., Baretta, D., & Ourique, A. F. (2019). Evaluation of cytotoxicity, genotoxicity and ecotoxicity of nanoemulsions containing Mancozeb and Eugenol. Ecotoxicology and Environmental Safety, 169, 207-215.

Loftsson, T., & Duchêne, D. (2007). Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics, 329, 1-11.

Márton, R., Hermann, H., Kiss, V. T., Fenyvesi, É., Szente, L., & Molnár, M. (2025). Cyclodextrins in action: Modulating candida albicans biofilm formation and morphology. Biotechnology Reports, 47, e00912.

Montecchi, F., Russo, A., & Liu, J. (2013). Technology intelligence for innovation in the early phases of the innovation process: A collaborative approach. Technological Forecasting and Social Change, 80, 399-412.

Mura, P. (2014). Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. Journal of Pharmaceutical and Biomedical Analysis, 101, 238-250.

Niu, J., Wang, C., Liao, M., Liu, Y., Ding, Y., Yao, H., Zhang, H., & Cao, H. (2025). Supramolecular self-assembly of emamectin benzoate with β-cyclodextrin and polylactic acid: Enhancing pesticide efficacy and environmental safety. Chemical Engineering Journal, 509, 160834.

Oliveira, G., Moraes, J., Saudanha, G., Freitas, R., David, J., & Freitas, R. (2014). Neoflavonoids and its implications with relation to treatment of neglected diseases: a technological forecasting. Revista Gestão, Inovação e Tecnologias, 4, 1169-1179.

Oliveira, G. L., & Freitas, R. M. (2015). Diminazene aceturate—An antiparasitic drug of antiquity: Advances in pharmacology & therapeutics. Pharmacological Research, 102, 138-157.

Oliveira, G. L., Martines, N. A., & da Costa Barbosa Oliveira, J. (2021). Pathogenesis and Immune Status in COVID-19 Pneumonia - A Minireview. Coronaviruses, 2(9), 11-21.

Tripathi, K., Harshangkumar, T., Narayanan, N., Gupta, S., Singh, S. B., & Banerjee, T. (2025). Development and validation of a sensitive liquid chromatography-tandem mass spectrometry method for the analysis of Mancozeb residues in cauliflower: Risk assessment of real samples. Journal of Chromatography Open, 7, 100226.

Xiao, Z., Xu, Z., Zhou, L., Kang, Y., Niu, Y., & Zhao, D. (2025). Application of cyclodextrin-based microcapsules in food flavors and fragrances. Carbohydrate Polymers, 367, 123963.

Xiang Chuin, L., Kamaruzaman, S., Mangala Praveena, S., & Yahaya, N. (2024). Recent applications of β-cyclodextrin in selective adsorption of pesticides, heavy metals, and organic pollutants from water samples: Mini review. Microchemical Journal, 206, 111583.

Wan, M., Lv, S., Hong, T., Zhao, Y., Peng, L., & Sun, L. (2023). Carboxymethyl β-cyclodextrin grafted hollow copper sulfide@mesoporous silica carriers for stimuli-responsive pesticide delivery. Colloids and Surfaces B: Biointerfaces, 228, 113425.

Yoshimura, I., Piazza, R. D., da Silva Vale, R., Sass, D. C., de Carvalho, L. B., & Contiero, J. (2026). Formation and Characterization of Rhamnolipid–Cyclodextrin Complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 731, 139049.

Zhao, R., Tang, B., Xu, Z., & Fang, G. (2025). β-Cyclodextrin-based polyelectrolyte complexes for drug delivery. Coordination Chemistry Reviews, 534, 216581.

Zhang, H., & Ma, Z. (2024). Sustainable applications of cyclodextrins in agriculture. Journal of Environmental Chemical Engineering, 12, 110321.

Published

2025-12-07

Issue

Section

Review Article

How to Cite

Mancozeb inclusion complex with (2-hydroxypropyl)-β-cyclodextrin: A search of articles and patents. Research, Society and Development, [S. l.], v. 14, n. 12, p. e61141250300, 2025. DOI: 10.33448/rsd-v14i12.50300. Disponível em: https://rsdjournal.org/rsd/article/view/50300. Acesso em: 15 dec. 2025.