Investigation of biomarkers in neonatal saliva: Their possible prediction and methods for assessing neonatal health

Authors

DOI:

https://doi.org/10.33448/rsd-v14i12.50471

Keywords:

Clinical marker, Early diagnosis, Newborns, Neonatal screening.

Abstract

Human saliva is an exocrine biofluid composed of 99.5% water and biomolecules, earning it the designation of "mirror of health and body." For years, scientific literature has documented the potential of salivary biomarkers in diagnostic screening, disease monitoring, prognosis, and prediction, highlighting their stability and the feasibility of repeated sampling, especially in newborns. Despite this potential, saliva is not routinely employed as a specimen for neonatal screening. Thus, this research aims to investigate biomarkers in neonatal saliva, their predictive applications, and methods for assessing neonatal health. Using a qualitative approach and exploratory objective, an integrative literature review was conducted across databases including the CAPES Dissertation and Thesis Catalog, CAPES Journals Portal, PubMed, and SCOPUS, employing the descriptors in Portuguese and English: "Biomarcadores" AND "saliva"; "biomarcadores" AND "saliva" AND "neonatos." Inclusion criteria encompassed studies from the past five years, available online with free access; studies utilizing saliva as a biological specimen; and studies conducted with neonates. Twenty-one studies met the inclusion criteria and all studies were thoroughly reviewed to identify salivary biomarkers. The identified biomarkers were classified into four categories: Gene expression of specific genes; Cytokines; Hormones; and other proteins. Clinical implementation of these biomarkers is contingent upon three key challenges: the need for comparative validation between saliva and blood, acceptance by healthcare professionals, and standardization of protocols within the medical community. Despite these limitations, the evidence presented in the analyzed studies suggests that salivary biomarkers hold considerable promise for revolutionizing neonatal monitoring.

References

Abed, N. T., Behiry, E. G., & El-Aty, B. F. A. (2023). The Role of Salivary C-Reactive Protein in Diagnosis of Neonatal Sepsis. Journal of Neonatology, 37(1), 31–37. https://doi.org/10.1177/09732179231151757

Al Habobe, H., Haverkort, E. B., Nazmi, K., Van Splunter, A. P., Pieters, R. H. H., & Bikker, F. J. (2024). The impact of saliva collection methods on measured salivary biomarker levels. Clinica chimica acta; international journal of clinical chemistry, 552, 117628. https://doi.org/10.1016/j.cca.2023.117628

Barekatain, B., HasanGhalyaei, N., Mohammadizadeh, M., & Tavakolifard, N. (2021). Investigation of salivary C-reactive protein and interleukin-18 for the diagnosis of neonatal sepsis. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 26, 131. https://doi.org/10.4103/jrms.JRMS_1256_20

Bartolome, R., Kaneko-Tarui, T., Maron, J., & Zimmerman, E. (2020). The Utility of Speech-Language Biomarkers to Predict Oral Feeding Outcomes in the Premature Newborn. American journal of speech-language pathology, 29(2S), 1022–1029. https://doi.org/10.1044/2019_AJSLP-CSW18-19-0027

Bengnér, J., Quttineh, M., Gäddlin, P. O., Salomonsson, K., & Faresjö, M. (2021). Serum amyloid A - A prime candidate for identification of neonatal sepsis. Clinical immunology (Orlando, Fla.), 229, 108787. https://doi.org/10.1016/j.clim.2021.108787

Brasier, N., Osthoff, M., De Ieso, F., & Eckstein, J. (2021). Next-Generation Digital Biomarkers for Tuberculosis and Antibiotic Stewardship: Perspective on Novel Molecular Digital Biomarkers in Sweat, Saliva, and Exhaled Breath. Journal of medical Internet research, 23(8), e25907. https://doi.org/10.2196/25907

Brasil. (2014). Lei n. 13.002, de 20 de junho de 2014. Obriga a realização do Protocolo de Avaliação do Frênulo da Língua em Bebês. Brasília, DF: Presidência da República. Disponível em https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2014/lei/l13002.htm

Brooks, S., Friedes, B. D., Northington, F., Graham, E., Tekes, A., Burton, V. J., Gerner, G., Zhu, J., Chavez-Valdez, R., Vaidya, D., & Everett, A. D. (2023). Serum brain injury biomarkers are gestationally and post-natally regulated in non-brain injured neonates. Pediatric research, 93(7), 1943–1954. https://doi.org/10.1038/s41390-021-01906-8

Brown, J. V. E., Meader, N., Cleminson, J., & McGuire, W. (2019). C-reactive protein for diagnosing late-onset infection in newborn infants. The Cochrane database of systematic reviews, 1(1), CD012126. https://doi.org/10.1002/14651858.CD012126.pub2

Castelli, B., Shapoori, S., McMahon, J., & FitzGerald, U. (2024). Measurement of immune and inflammatory biomarkers in serum and saliva in a multiple sclerosis cohort. Neuroscience Applied, 3, 104659. https://doi.org/10.1016/j.nsa.2024.104659

Ceyhan-Birsoy, O., Murry, J. B., Machini, K., Lebo, M. S., Yu, T. W., Fayer, S., Genetti, C. A., Schwartz, T. S., Agrawal, P. B., Parad, R. B., Holm, I. A., McGuire, A. L., Green, R. C., Rehm, H. L., Beggs, A. H., & BabySeq Project Team (2019). Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. American journal of human genetics, 104(1), 76–93. https://doi.org/10.1016/j.ajhg.2018.11.016

Chen, I. L., Huang, H. C., Ou-Yang, M. C., Chen, F. S., Chung, M. Y., & Chen, C. C. (2020). A novel method to detect bacterial infection in premature infants: Using a combination of inflammatory markers in blood and saliva. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi, 53(6), 892–899. https://doi.org/10.1016/j.jmii.2019.11.002

Datla, S., Kitchanan, S., & Sethuraman, G. (2021). Diagnostic Reliability of Salivary C-Reactive Protein as an Alternative Noninvasive Biomarker of Neonatal Sepsis. Indian pediatrics, 58(8), 745–748.

Dias, L. R., Tomasi, Y. T., & Boing, A. F. (2024). The newborn screening tests in Brazil: regional and socioeconomic prevalence and inequalities in 2013 and 2019. Jornal de pediatria, 100(3), 296–304. https://doi.org/10.1016/j.jped.2023.11.008

Diesch, T., Filippi, C., Fritschi, N., Filippi, A., & Ritz, N. (2021). Cytokines in saliva as biomarkers of oral and systemic oncological or infectious diseases: A systematic review. Cytokine, 143, 155506. https://doi.org/10.1016/j.cyto.2021.155506

Dressendörfer, R. A., Kirschbaum, C., Rohde, W., Stahl, F., & Strasburger, C. J. (1992). Synthesis of a cortisol-biotin conjugate and evaluation as a tracer in an immunoassay for salivary cortisol measurement. The Journal of steroid biochemistry and molecular biology, 43(7), 683–692. https://doi.org/10.1016/0960-0760(92)90294-s

Ergünol, E., Şemsi, R., & Dinçel, A. S. (2024). Age and gender related changes on total antioxidant/oxidant status and electrolyte composition of saliva. Aspects of Molecular Medicine, 4, 100054. https://doi.org/10.1016/j.amolm.2024.100054

Fonseca, João José Saraiva. (2002). Metodologia da Pesquisa Científica. Universidade Estadual do Ceará.

Franco, V. L. de M., Marques, L. de O. C., Diniz, S. G. S., Assunção, V. I. de S., Nogueira, A. B. L., Bragagnolo, J. C. B., Barezani, A. F. B., & Paim, M. J. A. (2021). A técnica de elisa e a sua importância para o diagnóstico clinico / The elisa technique and its importance for clinical diagnosis. Brazilian Journal of Development, 7(9), 89877–89885. https://doi.org/10.34117/bjdv7n9-243

Gerona, R. R., & French, D. (2022). Drug testing in the era of new psychoactive substances. Advances in clinical chemistry, 111, 217–263. https://doi.org/10.1016/bs.acc.2022.08.001

GIL, A. C. (2002). Como elaborar projetos de pesquisa (4ed.) São Paulo: Atlas.

Green, R. C., Shah, N., Genetti, C. A., Yu, T., Zettler, B., Uveges, M. K., Ceyhan-Birsoy, O., Lebo, M. S., Pereira, S., Agrawal, P. B., Parad, R. B., McGuire, A. L., Christensen, K. D., Schwartz, T. S., Rehm, H. L., Holm, I. A., Beggs, A. H., & BabySeq Project Team (2023). Actionability of unanticipated monogenic disease risks in newborn genomic screening: Findings from the BabySeq Project. American journal of human genetics, 110(7), 1034–1045. https://doi.org/10.1016/j.ajhg.2023.05.007

Golubinskaya, V., Nilsson, H., Rydbeck, H., Hellström, W., Hellgren, G., Hellström, A., Sävman, K., & Mallard, C. (2024). Cytokine and growth factor correlation networks associated with morbidities in extremely preterm infants. BMC pediatrics, 24(1), 723. https://doi.org/10.1186/s12887-024-05203-1

Gomes, L.H.F, Marques, A. B., DIAS, I.C.M., Gabeira, S.C.O., Barcelos, T.R., Guimarães, M.O., Ferreira, I.R., Guida, L.C., Lucena, S.L & Rocha, A. D. (2024). Validation of Gene Expression Patterns for Oral Feeding Readiness: Transcriptional Analysis of Set of Genes in Neonatal Salivary Samples. Genes, 15(7), 936–936. https://doi.org/10.3390/genes15070936

Gomes, L. H. F., Marques, A. B., Dias, I. C. M., Cunha, D. P., Pimenta, H. P., Guida, L. D. C., Lucena, S. L., & Rocha, A. D. (2025). FOXP2 Expression and Oral Feeding Success in Preterm Infants: Sex 2 Differences. Genes, 16(2), 190. https://doi.org/10.3390/genes16020190

Gulati, P., Singh, A. K., Yadav, A. K., Pasbola, K., Pandey, P., Sharma, R., Thakar, A., & Solanki, P. R. (2023). Nano-modified screen-printed electrode-based electrochemical immunosensors for oral cancer biomarker detection in undiluted human serum and saliva samples. Nanoscale advances, 6(2), 705–721. https://doi.org/10.1039/d3na00682d

Huang, H. B., Lin, Y. B., Chen, J. H., Zhu, M., Chen, L. J., Ye, W., Luo, L. H., & Ye, H. M. (2024). Management of refined and personalized newborn blood specimen collection. Practical laboratory medicine, 40, e00408. https://doi.org/10.1016/j.plabm.2024.e00408

Iavarone, F., Tirone, C., Fattore, S., De Tomaso, D., Menzella, N., Vento, G., Olianas, A., Manconi, B., Cabras, T., Guadalupi, G., Contini, C., Boroumand, M., Desiderio, C., Muntiu, A., Fiorita, A., Fraschini, M., Fanos, V., Faa, G., Messana, I., & Castagnola, M. (2025). Characterization of N-Terminal Acetylated α-Hemoglobin Stabilizing Protein (AHSP) by Top-Down High-Resolution Mass Spectrometry From Human Preterm Newborns Oral Fluid. Rapid communications in mass spectrometry : RCM, 39(21), e10107. https://doi.org/10.1002/rcm.10107

Janakiraman, S., Sha, R., & Mani, N. K. (2025). Recent advancements in Point-of-Care Detection of Contaminants and Biomarkers in Human Breast Milk: A comprehensive review. Sensors and Actuators Reports, 9, 100280. https://doi.org/10.1016/j.snr.2024.100280

Kataoka, H., Ohshima, H., & Ohkawa, T. (2022). Simultaneous analysis of multiple steroidal biomarkers in saliva for objective stress assessment by on-line coupling of automated in-tube solid-phase microextraction and polarity-switching LC-MS/MS. Talanta Open, 7, 100177. https://doi.org/10.1016/j.talo.2022.100177

Kim, J. S., Taitt, C. R., Ligler, F. S., & Anderson, G. P. (2010). Multiplexed magnetic microsphere immunoassays for detection of pathogens in foods. Sensing and instrumentation for food quality and safety, 4(2), 73–81. https://doi.org/10.1007/s11694-010-9097-x

Kimura, M., Ito, Y., Shimomura, M., Morishita, H., Meguro, T., Adachi, Y., Seto, S. (2017). Cytokine profile after oral food challenge in infants with food protein-induced enterocolitis syndrome. Allergol Int. Jul;66(3):452-457. https://www.sciencedirect.com/science/article/pii/S1323893016301708?via%3Dihub

Knudsen, N., Tang, S., Lauzon, S., Dhaurali, S., Snyder, N. W., & Voegtline, K. M. (2024). Meconium as an Analyte for Androgen Exposure: Analysis Through Varying Maternal-Fetal Biomarkers. Developmental psychobiology, 66(7), e22550. https://doi.org/10.1002/dev.22550

Khurshid, Z., Zafar, M., Khan, E., Mali, M., & Latif, M. (2019). Human saliva can be a diagnostic tool for Zika virus detection. Journal of infection and public health, 12(5), 601–604. https://doi.org/10.1016/j.jiph.2019.05.004

LI, G. (2019). Nano-inspired biosensors for protein assay with clinical applications. Amsterdam, Netherlands ; Cambridge, Ma: Elsevier.

Lin, G. C., Küng, E., Smajlhodzic, M., Domazet, S., Friedl, H. P., Angerer, J., Wisgrill, L., Berger, A., Bingle, L., Peham, J. R., & Neuhaus, W. (2021). Directed Transport of CRP Across In Vitro Models of the Blood-Saliva Barrier Strengthens the Feasibility of Salivary CRP as Biomarker for Neonatal Sepsis. Pharmaceutics, 13(2), 256. https://doi.org/10.3390/pharmaceutics13020256

Madera Anaya, M. V., & Suárez Causado, A. (2017). Evaluation of two RNA extraction methods in children’s saliva. Revista Odontológica Mexicana, 21(4), e237–e243. https://doi.org/10.1016/j.rodmex.2018.01.014

Marin J. L. (2016). The Neonatal Salivary Transcriptome. Cold Spring Harbor perspectives in medicine, 6(3), a026369. https://doi.org/10.1101/cshperspect.a026369

McCarty, D., Silver, R., Quinn, L., Dusing, S., & O'Shea, T. M. (2024). Infant massage as a stress management technique for parents of hospitalized extremely preterm infants. Infant mental health journal, 45(1), 11–21. https://doi.org/10.1002/imhj.22095

Medeiros, P.D.S., & Da Silva, M.R.B. (2022). Conhecimento dos pais acerca da triagem neonatal. Revista Multidisciplinar do Sertão, v. 4, n. 3, p. 286-295. Disponível em https://www.revistamultisertao.com.br/index.php/revista/article/view/440/279

Metwali, W. A., Elmashad, A. M., Hazzaa, S. M. E., Al-Beltagi, M., & Hamza, M. B. (2024). Salivary C-reactive protein and mean platelet volume as possible diagnostic markers for late-onset neonatal pneumonia. World journal of clinical pediatrics, 13(1), 88645. https://doi.org/10.5409/wjcp.v13.i1.0000

Mohd Amin, A. T., Zaki, R. A., Friedmacher, F., & Sharif, S. P. (2021). C-reactive protein/albumin ratio is a prognostic indicator for predicting surgical intervention and mortality in neonates with necrotizing enterocolitis. Pediatric surgery international, 37(7), 881–886. https://doi.org/10.1007/s00383-021-04879-1

Moo-Young, Murray (Ed) (2011). Comprehensive biotechnology. (Vol. 6, 2.ed). Saint Louis, Mo.: Newnes.

Mulder, K. E., van Oostrom, E. C., Verheul, M. C., Hendriksen, P. A., Thijssen, S., Diks, M. A., Kraneveld, A. D., Garssen, J., & Verster, J. C. (2023). The relationship between immune fitness and saliva biomarkers of systemic inflammation. Brain, behavior, & immunity - health, 31, 100660. https://doi.org/10.1016/j.bbih.2023.100660

Naseem, R., Howe, N., Williams, C. J., Pretorius, S., & Green, K. (2024). What diagnostic tests are available for respiratory infections or pulmonary exacerbations in cystic fibrosis: A scoping literature review. Respiratory investigation, 62(5), 817–831. https://doi.org/10.1016/j.resinv.2024.07.005

Niehues, T., von Hardenberg, S., & Velleuer, E. (2024). Rapid identification of primary atopic disorders (PAD) by a clinical landmark-guided, upfront use of genomic sequencing. Allergologie select, 8, 304–323. https://doi.org/10.5414/ALX02520E

Omran, A., Ali, Y., Abdalla, M. O., El-Sharkawy, S., Rezk, A. R., & Khashana, A. (2021). Salivary Interleukin-6 and C-Reactive Protein/Mean Platelet Volume Ratio in the Diagnosis of Late-Onset Neonatal Pneumonia. Journal of immunology research, 2021, 8495889. https://doi.org/10.1155/2021/8495889

Omran, A., Sobh, H., Abdalla, M. O., El-Sharkawy, S., Rezk, A. R., & Khashana, A. (2021). Salivary and Serum Interleukin-10, C-Reactive Protein, Mean Platelet Volume, and CRP/MPV Ratio in the Diagnosis of Late-Onset Neonatal Sepsis in Full-Term Neonates. Journal of immunology research, 2021, 4884537. https://doi.org/10.1155/2021/4884537

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed.), 372, n71. https://doi.org/10.1136/bmj.n71

Pang, R., Mujuni, B. M., Martinello, K. A., Webb, E. L., Nalwoga, A., Ssekyewa, J., Musoke, M., Kurinczuk, J. J., Sewegaba, M., Cowan, F. M., Cose, S., Nakakeeto, M., Elliott, A. M., Sebire, N. J., Klein, N., Robertson, N. J., & Tann, C. J. (2021). Elevated serum IL-10 is associated with severity of neonatal encephalopathy and adverse early childhood outcomes. Pediatric Research, 92(1), 180–189. https://doi.org/10.1038/s41390-021-01438-1

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [ebook gratuito]. Santa Maria: Editora da UFSM.

Pourkaviani, S., Zhang, X., Spear, E. A., D'Agostino, M., Satty, R. E., Liu, S. H., & Stroustrup, A. (2020). Clinical validation of the Neonatal Infant Stressor Scale with preterm infant salivary cortisol. Pediatric research, 87(7), 1237–1243. https://doi.org/10.1038/s41390-019-0713-0

Ren, Z., Mo, W., Yang, L., Wang, J., Zhang, Q., Zhong, Z., Wei, W., Liu, Z., Wu, Z., Yao, Y., & Yang, J. (2022). Cord blood antimicrobial peptide LL37 levels in preterm neonates and association with preterm complications. The Italian Journal of Pediatrics/Italian Journal of Pediatrics, 48(1), 111–111. https://doi.org/10.1186/s13052-022-01295-6

Rocha, V. A. D., Cruz-Machado, S. D. S., Silva, I. A., Fernandes, P. A. C. M., Markus, R. P., & Bueno, M. (2024). Identification of Inflammatory Mediators in Saliva Samples From Hospitalized Newborns: Potential Biomarkers?. Clinical nursing research, 33(4), 207–219. https://doi.org/10.1177/10547738241238249

Rodriguez, N., Vining, M., & Bloch-Salisbury, E. (2020). Salivary cortisol levels as a biomarker for severity of withdrawal in opioid-exposed newborns. Pediatric research, 87(6), 1033–1038. https://doi.org/10.1038/s41390-019-0601-7

Siddaiah, R., Emery, L., Stephens, H., Donnelly, A., Erkinger, J., Wisecup, K., Hicks, S. D., Kawasawa, Y. I., Oji-Mmuo, C., Amatya, S., & Silveyra, P. (2022). Early Salivary miRNA Expression in Extreme Low Gestational Age Newborns. Life (Basel, Switzerland), 12(4), 506. https://doi.org/10.3390/life12040506

Solaz-García, A., Lara-Cantón, I., Peña-Bautista, C., Cháfer-Pericás, C., Cañada-Martínez, A. J., Pinilla-González, A., Vento, M., & Sáenz-González, P. (2021). Non-invasive monitoring of saliva can be used to identify oxidative stress biomarkers in preterm and term newborn infants. Acta paediatrica (Oslo, Norway : 1992), 110(12), 3255–3260. https://doi.org/10.1111/apa.16073

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 104, 333-9. Doi: https://doi.org/10.1016/j.jbusres.2019.07.039

Swetha, P., Balijapalli, U., & Feng, S.-P. (2022). Wireless accessing of salivary biomarkers based wearable electrochemical sensors: A mini-review. Electrochemistry Communications, 140, 107314. https://doi.org/10.1016/j.elecom.2022.107314

Su, T. Y., Chen, I. L., Yeh, T. F., Yu, H. R., Hsu, Y. L., Hung, C. H., & Huang, H. C. (2021). Salivary cytokine - A non-invasive predictor for bronchopulmonary dysplasia in premature neonates. Cytokine, 148, 155616. https://doi.org/10.1016/j.cyto.2021.155616

Tang, Z., Jiang, M., Ou-Yang, Z., Wu, H., Dong, S., & Hei, M. (2019). High mobility group box 1 protein (HMGB1) as biomarker in hypoxia-induced persistent pulmonary hypertension of the newborn: a clinical and in vivo pilot study. International journal of medical sciences, 16(8), 1123–1131. https://doi.org/10.7150/ijms.34344

Testosterone Estosterone Enzyme Immunoassay Kit: Expanded Range. (2018). State College, PA: Salimetrics.

Tilahun, D., Yimer, M. A., & Zamanuel, T. G. (2022). High Magnitude of Neonatal Anemia Among Sick Newborns Admitted to University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. Journal of blood medicine, 13, 293–302. https://doi.org/10.2147/JBM.S361675

Toldra, F., WU, J. (2021). Biologically Active Peptides (Vol 1.). United Kingdom: Elsevier.

Tosson, A. M. S., Koptan, D., Abdel Aal, R., & Abd Elhady, M. (2021). Evaluation of serum and salivary C-reactive protein for diagnosis of late-onset neonatal sepsis: A single center cross-sectional study. Jornal de pediatria, 97(6), 623–628. https://doi.org/10.1016/j.jped.2021.01.004

Triagem neonatal biológica: manual técnico. (2016). Brasil, Brasília: Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Especializada e Temática.

Vasan, R.S., Sawyer, B.D., (2018). Encyclopedia of cardiovascular research and medicine (Vol. 4, ed 1st.). Amsterdam, Netherlands: Elsevier

Yen, E., Kaneko-Tarui, T., & Maron, J. L. (2021). Technical Considerations and Protocol Optimization for Neonatal Salivary Biomarker Discovery and Analysis. Frontiers in pediatrics, 8, 618553. https://doi.org/10.3389/fped.2020.618553

Zamora-Obando, H. R., Godoy, A. T., Amaral, A. G., Mesquita, A. de S., Simões, B. E. S., Reis, H. O., Rocha, I., Dallaqua, M., Baptistão, M., Fernandes, M. C. V., Lima, M. F., & Simionato, A. V. C.. (2022). Biomarcadores moleculares de doenças humana: conceitos fundamentais, modelos de estudo e aplicações clínicas. Química Nova, 45(9), 1098–1113. https://doi.org/10.21577/0100-4042.20170905

Zhu, X., Mao, Z., Zheng, P., Wang, L., Zhang, F., Zi, G., Liu, H., Zhang, H., Liu, W., & Zhou, L. (2025). The role and research progress of epigenetic modifications in obstructive sleep apnoea-hypopnea syndrome and related complications. Respiratory medicine, 242, 108099. https://doi.org/10.1016/j.rmed.2025.108099

Published

2025-12-29

Issue

Section

Health Sciences

How to Cite

Investigation of biomarkers in neonatal saliva: Their possible prediction and methods for assessing neonatal health. Research, Society and Development, [S. l.], v. 14, n. 12, p. e189141250471, 2025. DOI: 10.33448/rsd-v14i12.50471. Disponível em: https://rsdjournal.org/rsd/article/view/50471. Acesso em: 2 jan. 2026.