Using computer vision for equitable property valuation in urban areas

Authors

DOI:

https://doi.org/10.33448/rsd-v14i7.48995

Keywords:

Artificial Intelligence, Computer Vision, Property Valuation, Urban Areas, Equitable Assessment, Smart Cities.

Abstract

The objective of this article is to present a study on the use of computer vision based on AI (Artificial Intelligence) for equitable property valuation in urban areas. This systematic literature review explores the emerging field of applying Artificial Intelligence, particularly computer vision, to improve equity, accuracy, and efficiency in property valuation in urban environments. Drawing on a wide range of academic papers—including discussions on AI in smart cities, computer vision applications, and systematic review methodologies—this study summarizes the current knowledge on the potential of AI-driven computer vision to overcome the limitations of conventional methods and contribute to more equitable urban development.

References

Ahn, M. J., & Chen, Y.-C. (2020). Artificial intelligence in government. Proceedings of the 21st Annual International Conference on Digital Government Research. https://doi.org/10.1145/3396956.3398260

Al-Ansi, A. M., Garad, A., Jaboob, M., & Al-Ansi, A. (2024). Elevating e-government: Unleashing the power of AI and IoT for enhanced public services. SSRN. https://doi.org/10.2139/ssrn.4883206

Antwi, B. O., Adelakun, B. O., & Eziefule, A. O. (2024). Transforming financial reporting with AI: Enhancing accuracy and timeliness. International Journal of Advanced Economics, 6(6), 205-223. https://doi.org/10.51594/ijae.v6i6.1229

Ardabili, B. R., Pazho, A. D., Noghre, G. A., Neff, C., Bhaskararayuni, S. D., Ravindran, A., Reid, S., & Tabkhi, H. (2023). Understanding policy and technical aspects of AI-enabled smart video surveillance to address public safety. arXiv. https://doi.org/10.48550/arxiv.2302.04310

Bibri, S. E., Huang, J., Jagatheesaperumal, S. K., & Krogstie, J. (2024). The synergistic interplay of artificial intelligence and digital twin in environmentally planning sustainable smart cities: A comprehensive systematic review. Environmental Science and Ecotechnology, 20, 100433. https://doi.org/10.1016/j.ese.2024.100433

Chen, Y.-C., Ahn, M. J., & Wang, Y. (2023). Artificial intelligence and public values: Value impacts and governance in the public sector. Sustainability, 15(6), 4796. https://doi.org/10.3390/su15064796

Crossetti, M. da G. O. (2012). Revisão integrativa de pesquisa na enfermagem o rigor cientifico que lhe é exigido. Revista Gaúcha de Enfermagem, 33(2), 8-9. https://doi.org/10.1590/S1983-14472012000200001

Gupta, R., Reebadiya, D., & Tanwar, S. (2021). 6G-enabled edge intelligence for ultra-reliable low latency applications: Vision and mission. Computer Standards & Interfaces, 77, 103521. https://doi.org/10.1016/j.csi.2021.103521

Hamirul, Darmawanto, Elsyra, N., & Syahwami. (2023). The role of artificial intelligence in government services: A systematic literature review. Open Access Indonesia Journal of Social Sciences, 6(3), 998-1003. https://doi.org/10.37275/oaijss.v6i3.163

Himeur, Y., Sayed, A. N., Alsalemi, A., Bensaali, F., & Amira, A. (2023). Edge AI for internet of energy: Challenges and perspectives. Internet of Things, 25, 101035. https://doi.org/10.1016/j.iot.2023.101035

Liu, Y., Yang, D., Wang, Y., Liu, J., Liu, J., Boukerche, A., Sun, P., & Song, L. (2024). Generalized video anomaly event detection: Systematic taxonomy and comparison of deep models. ACM Computing Surveys, 56(7), 1-38.

Lotlikar, P., & Mohs, J. N. (2021). Examining the role of artificial intelligence on modern auditing techniques. Strategic Management Quarterly, 9(2). https://doi.org/10.15640/smq.v9n2a1

Margetts, H. (2022). Rethinking AI for good governance. Daedalus, 151(2), 360-371. https://doi.org/10.1162/daed_a_01922

Messaoudi, M. D., Ménélas, B.-A. J., & Mcheick, H. (2022). Review of navigation assistive tools and technologies for the visually impaired. Sensors, 22(20), 7888. https://doi.org/10.3390/s22207888

Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104

Ochoa-Ruiz, G., Angulo-Murillo, A. A., Ochoa, A., Aguilar-Lobo, L. M., Vega-Fernández, J. A., & Natraj, S. (2020). An asphalt damage dataset and detection system based on RetinaNet for road conditions assessment. Applied Sciences, 10(11), 3974. https://doi.org/10.3390/app10113974

Pan, Y., & Zhang, L. (2020). Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Automation in Construction, 122, 103517. https://doi.org/10.1016/j.autcon.2020.103517

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia de pesquisa científica. Editora da UAB/NTE/UFSM.

Reades, J., De Souza, J., & Hubbard, P. (2018). Understanding urban gentrification through machine learning. Urban Studies, 56(5), 922-942. https://doi.org/10.1177/0042098018789054

Rjab, A. B., & Mellouli, S. (2019). Artificial intelligence in smart cities. Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance. https://doi.org/10.1145/3326365.3326400

Roberts, A., & Goullette, S. (1996). CCTV surveillance: The local authority's role - A review of current practice. *Proceedings of the Institution of Civil Engineers - Municipal Engineer, 115*(2), 61-67. https://doi.org/10.1680/imuen.1996.28908

Sagayam, K. M., Winston, J. J., Wahab, M. H. A., Bhushan, B., Ambar, R., & Poad, H. M. (2021). Combination of thermal and sRGB imaging techniques for advanced surveillance system. Annals of Emerging Technologies in Computing, 5(5), 27-33. https://doi.org/10.33166/aetic.2021.05.003

Shah, N., Bhagat, N., & Shah, M. (2021). Crime forecasting: A machine learning and computer vision approach to crime prediction and prevention. Visual Computing for Industry, Biomedicine, and Art, 4(1). https://doi.org/10.1186/s42492-021-00087-9

Spencer, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030

Surianarayanan, C., Lawrence, J. J., Chelliah, P. R., Prakash, E., & Hewage, C. (2023). A survey on optimization techniques for edge artificial intelligence (AI). Sensors, 23(3), 1279. https://doi.org/10.3390/s23031279

Valle-Cruz, D., Ruvalcaba-Gómez, E. A., Sandoval-Almazán, R., & Criado, J. I. (2019). A review of artificial intelligence in government and its potential from a public policy perspective. Proceedings of the 20th Annual International Conference on Digital Government Research (pp. 91-99). ACM. https://doi.org/10.1145/3325112.3325242

Vanky, A., & Le, R. (2023). Urban-semantic computer vision: A framework for contextual understanding of people in urban spaces. AI & Society, 38(3), 1193-1207. https://doi.org/10.1007/s00146-022-01625-6

Vijeikis, R., Raudonis, V., & Dervinis, G. (2022). Efficient violence detection in surveillance. Sensors, 22(6), 2216. https://doi.org/10.3390/s22062216

Wang, D., Lu, C.-T., & Fu, Y. (2023). Towards automated urban planning: When generative and ChatGPT-like AI meets urban planning. arXiv. https://doi.org/10.48550/arxiv.2304.03892

Yiğitcanlar, T., Agdas, D., & Degirmenci, K. (2022). Artificial intelligence in local governments: Perceptions of city managers on prospects, constraints and choices. AI & Society, 38(3), 1135-1150. https://doi.org/10.1007/s00146-022-01450-x

Yiğitcanlar, T., & Cugurullo, F. (2020). The sustainability of artificial intelligence: An urbanistic viewpoint from the lens of smart and sustainable cities. Sustainability, 12(20), 8548. https://doi.org/10.3390/su12208548

Yiğitcanlar, T., David, A., Li, W., Fookes, C., Bibri, S. E., & Ye, X. (2024). Unlocking artificial intelligence adoption in local governments: Best practice lessons from real-world implementations. Smart Cities, 7(4), 1576-1625. https://doi.org/10.3390/smartcities7040064

Yiğitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473. https://doi.org/10.3390/en13061473

Published

2025-07-02

Issue

Section

Exact and Earth Sciences

How to Cite

Using computer vision for equitable property valuation in urban areas. Research, Society and Development, [S. l.], v. 14, n. 7, p. e0314748995, 2025. DOI: 10.33448/rsd-v14i7.48995. Disponível em: https://rsdjournal.org/rsd/article/view/48995. Acesso em: 5 dec. 2025.