Smart farm for managing poultry, cattle, and pig waste to mitigate climate change
DOI:
https://doi.org/10.33448/rsd-v14i6.49009Keywords:
Smart Farms, Biogas, Waste Management, Environmental Pollution, Composting.Abstract
The objective of this literature review is to analyze the potential of advanced technologies and digitalization in the context of “smart farms” to optimize waste management in the livestock sector, with special attention to solid waste stabilization processes. This literature review analyzes technologies applied to fecal waste management in the livestock industry, with emphasis on poultry, cattle and swine manure treatment. The benefits of proper management, such as reduction of greenhouse gas emissions and reduction in the spread of pathogens, as well as the environmental consequences of poor management, including water contamination, and its impact on climate change are discussed. It is hypothesized that the adoption of advanced technologies and digitization of processes that would allow for more efficient waste management, minimizing nutrient loss, controlling pathogens and reducing environmental impact. The operational factors of stabilization technologies, their advantages, limitations and the feasibility of adopting large-scale automated systems are also discussed.
References
Abdugheni, R., Li, L., Yang, Z. N., Huang, Y., Fang, B. Z., Shurigin, V., Mohamad, O. A. A., Liu, Y. H., & Li, W. J. (2023). Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms, 11(8), 1897. https://doi.org/10.3390/MICROORGANISMS11081897
Adánez-Rubio, I., Ferreira, R., Rio, T., Alzueta, M. U., & Costa, M. (2020a). Soot and char formation in the gasification of pig manure in a drop tube reactor. Fuel, 281, 118738. https://doi.org/10.1016/J.FUEL.2020.118738
Adánez-Rubio, I., Ferreira, R., Rio, T., Alzueta, M. U., & Costa, M. (2020b). Soot and char formation in the gasification of pig manure in a drop tube reactor. Fuel, 281, 118738. https://doi.org/10.1016/J.FUEL.2020.118738
Amaro De Sales, R., Amaro De Sales, R., Thaís Almeida Do Nascimento, ;, Tiago, ;, da Silva, A., Sávio Da, ;, Berilli, S., Robson, ;, & Santos, A. dos. (2017). Influência de diferentes fontes de matéria orgânica na propagação da schinus terebinthifolius raddi. Scientia Agraria, 18(4), 99–106. https://www.redalyc.org/articulo.oa?id=99554928013
Andrade Foronda, D., & Colinet, G. (2022). Combined Application of Organic Amendments and Gypsum to Reclaim Saline–Alkali Soil. Agriculture 2022, Vol. 12, Page 1049, 12(7), 1049. https://doi.org/10.3390/AGRICULTURE12071049
Anil, D., Bairwa, B., Anusha, H., Aravind, M., Kumar, S., & Doddabasappa, N. (2024). Investigation on Smart Agriculture Monitoring System Using IoT. 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT 2024. https://doi.org/10.1109/ICCCNT61001.2024.10724229
Arago, N., Alvarez, C., Mabale, A., Legista, C., Repiso, N., Amado, T., Jorda, R., Thio-ac, A., Tolentino, L., & Velasco, J. (2022). Smart Dairy Cattle Farming and In-Heat Detection through the Internet of Things (IoT). International Journal of Integrated Engineering, 14(1), 157–172. https://doi.org/10.30880/IJIE.2022.14.01.014
Ardaji, V., Radnezhad, H., & Nourouzi, M. (2016). Improving Biogas Production Performance From Pomegranate Waste, Poultry Manure and Cow Dung Sludge Using Thermophilic Anaerobic Digestion: Effect of Total Solids Adjustment. Journal of Earth, Environment and Health Sciences, 2(3), 97. https://doi.org/10.4103/2423-7752.199293
Aydin, A. (n.d.). Novel Technologies and Automation Systems In Livestock Farms. https://doi.org/10.33552/AAHDS.2021.02.000538
Azuara, M., Kersten, S., & Kootstra, A. M. (2013). Recycling phosphorus by fast pyrolysis of pig manure: Concentration and extraction of phosphorus combined with formation of value-added pyrolysis products. Biomass and Bioenergy, 49, 171–180. https://doi.org/10.1016/j.biombioe.2012.12.010
Baek, G., Kim, D., Kim, J., Kim, H., & Lee, C. (2020). Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect. International Journal of Environmental Research and Public Health 2020, Vol. 17, Page 4737, 17(13), 4737. https://doi.org/10.3390/IJERPH17134737
Balachandar, R., Biruntha, M., Yuvaraj, A., Thangaraj, R., Subbaiya, R., Govarthanan, M., Kumar, P., & Karmegam, N. (2021). Earthworm intervened nutrient recovery and greener production of vermicompost from Ipomoea staphylina – An invasive weed with emerging environmental challenges. Chemosphere, 263, 128080. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128080
Barasa, M., Olanrewaju, O., & Akpan, J. (2024). Biogas Production and Process Control Improvements. From Biomass to Biobased Products. https://doi.org/10.5772/INTECHOPEN.113061
Barba Campos, Emilio., & Andreu, Vicente. (2020). Presente y futuro de las tecnologías verdes: contribuciones desde la Universitat de València. https://dialnet.unirioja.es/servlet/libro?codigo=864138&info=resumen&idioma=CAT
Barreda-Del-Carpio, J. E., Ancco Mamani, M. R., Núñez Chambi, A. D., Aguirre, C. E., Tejada Meza, K., Pacheco Pacheco, G. M., Barreda-Del-Carpio, J. E., Ancco Mamani, M. R., Núñez Chambi, A. D., Aguirre, C. E., Tejada Meza, K., & Pacheco Pacheco, G. M. (2022). Co-Digestión de Tres Tipos de Estiércol (Vaca, Cuy y Cerdo) para Obtener Biogás en el Sur del Perú. Revista de Investigaciones Altoandinas, 24(3), 174–181. https://doi.org/10.18271/RIA.2022.457
Bawm, S., Htun, L. L., Chel, H. M., Khaing, Y., Hmoon, M. M., Thein, S. S., Win, S. Y., Soe, N. C., Thaw, Y. N., Hayashi, N., Win, M. M., Nonaka, N., Katakura, K., & Nakao, R. (2024). A survey of gastrointestinal helminth infestation in smallholder backyard pigs and the first molecular identification of the two zoonotic helminths Ascaris suum and Trichuris suis in Myanmar. BMC Veterinary Research, 20(1). https://doi.org/10.1186/S12917-024-03998-W
Behera, S., & Ray, R. (2021). Bioprospecting of cowdung microflora for sustainable agricultural, biotechnological and environmental applications. Current Research in Microbial Sciences, 2, 100018. https://doi.org/10.1016/J.CRMICR.2020.100018
Bello, A., Deng, L., Sheng, S., Jiang, X., Yang, W., Meng, Q., Wu, X., Han, Y., Zhu, H., & Xu, X. (2020). Biochar reduces nutrient loss and improves microbial biomass of composted cattle manure and maize straw. Biotechnology and Applied Biochemistry, 67(5), 799–811. https://doi.org/10.1002/BAB.1862
Bhatt, K., Dinesh, &, & Maheshwari, K. (n.d.). Decoding multifarious role of cow dung bacteria in mobilization of zinc fractions along with growth promotion of C. annuum L. https://doi.org/10.1038/s41598-019-50788-8
Bhavika, M., Ashwanth, P., & Abhishek, V. (2024). SMART FARM: Crop, Fertiliser and Disease Management through Machine Learning and Deep Learning Applications. International Journal of Innovative Science and Research Technology (IJISRT), 1024–1030. https://doi.org/10.38124/IJISRT/IJISRT24JUL549
Bil Der, T., & Çerçi̇oğlu, M. (2019). Tarım Bilimleri Dergisi The Impact of Soil Conditioners on Some Chemical Properties of Soil and Grain Yield of Corn (Zea Mays L.). JOURNAL OF AGRICULTURAL SCIENCES, 25, 224–231. https://doi.org/10.15832/ankutbd.399164
Boudjabi, S., & Chenchouni, H. (2023). Comparative effectiveness of exogenous organic amendments on soil fertility, growth, photosynthesis and heavy metal accumulation in cereal crops. Heliyon, 9(4), e14615. https://doi.org/10.1016/J.HELIYON.2023.E14615
Cahyono, Y., & Ratni, N. (2023). Efektifitas Kombinasi Limbah Sayur dan Kotoran Sapi Sebagai Bahan Utama Pembuatan Biogas dalam Digester Anaerob. INSOLOGI: Jurnal Sains Dan Teknologi, 2(4), 719–729. https://doi.org/10.55123/INSOLOGI.V2I4.2275
Callejo Ramos, A. (2020). Gestión de residuos en las granjas de vacuno de leche (II): Caracterización de deyecciones y efluentes. Frisona Española, ISSN 0211-3767, Año 40, No. 238, 2020, Págs. 96-101, 40(238), 96–101. https://dialnet.unirioja.es/servlet/articulo?codigo=7554175
Cano, M., Bennet, A., Silva, E., Robles, S., Sainos, U., & Castorena, H. (2016). Caracterización de bioles de la fermentación anaeróbica de excretas bovinas y porcinas characterization of bioles from the anaerobic fermentation of cattle and swine excreta. Agrociencia, 50(1), 471–479.
Casas, S., & Guerra, L. (2020). La gallinaza, efecto en el medio ambiente y posibilidades de reutilización. Revista de Producción Animal, 32(3). https://doi.org/10.1016/J.SCIAF.2020.E00452
Cervera-Mata, A., Navarro-Alarcón, M., Delgado, G., Pastoriza, S., Montilla-Gómez, J., Llopis, J., Sánchez-González, C., & Rufián-Henares, J. Á. (2019). Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) and are an ecological alternative to inorganic fertilizers. Food Chem., 282(282), 1–8. https://doi.org/10.1016/j.foodchem.2018.12.101
Chinyaeva, U., Kalganov, A., Kramarenko, M., & Minaev, E. (2022). The effect of different doses of pig manure on soil microbiological activity and spring wheat yield. IOP Conference Series: Earth and Environmental Science, 949(1), 012147–012147. https://doi.org/10.1088/1755-1315/949/1/012147
Collins, L., & Smith, L. (2022). Review: Smart agri-systems for the pig industry. Animal, 16, 100518. https://doi.org/10.1016/J.ANIMAL.2022.100518
Dahshan, H., Mohamed, A., & Abd-El-Kader. (2013). Field-scale management and evaluation of recycled cattle manure solids from livestock in Nile Delta ecosystem. https://scispace.com/papers/field-scale-management-and-evaluation-of-recycled-cattle-rqp9i6npwh
Delgado Arroyo, M. del M., Mendoza López, K. L., González, M. I., Tadeo Lluch, J. L., Martín Sánchez, J. V., Delgado Arroyo, M. del M., Mendoza López, K. L., González, M. I., Tadeo Lluch, J. L., & Martín Sánchez, J. V. (2019). Evaluación del proceso de compostaje de residuos avícolas empleando diferentes mezclas de sustratos. Revista Internacional de Contaminación Ambiental, 35(4), 965–977. https://doi.org/10.20937/RICA.2019.35.04.15
Dhanta, R., Mwale, M., Dhanta, R., & Mwale, M. (2024). Transforming Agriculture With Modern AI: Harnessing Artificial Intelligence to Revolutionize Farming. Https://Services.Igi-Global.Com/Resolvedoi/Resolve.Aspx?Doi=10.4018/979-8-3693-1902-4.Ch021, 350–370. https://doi.org/10.4018/979-8-3693-1902-4.CH021
Di Cicco, M., Tabilio Di Camillo, A., di Marzio, W., Sáenz, M. E., Galassi, D. M. P., Pieraccini, G., Galante, A., di Censo, D., & di Lorenzo, T. (2024). Subchronic Effects of Tetrachloroethylene on Two Freshwater Copepod Species: Implications for Groundwater Risk Assessment: Effects of tetrachloroethylene on freshwater copepods. Environmental Toxicology and Chemistry, 43(12), 2515–2527. https://doi.org/10.1002/ETC.5977
Dong, R., Qiao, W., Guo, J., & Sun, H. (2022). Manure treatment and recycling technologies. Circular Economy and Sustainability: Volume 2: Environmental Engineering, 161–180. https://doi.org/10.1016/B978-0-12-821664-4.00009-1
Doughmi, A., Elkafz, G., Cherkaoui, E., Khamar, M., Nounah, A., & Zouahri, A. (2024). Evaluation of the Compost’s Maturity of Different Mixtures of Olive Pomace and Poultry Manure. Ecological Engineering & Environmental Technology, 25(4), 11–27. https://doi.org/10.12912/27197050/182287
Dungan, R., & Leytem, A. (2013). The characterization of microorganisms in dairy wastewater storage ponds. Journal of Environmental Quality, 42(5), 1583–1588. https://doi.org/10.2134/JEQ2013.04.0134
Farmonaut. (2024, October 7). Australian Dairy Farm Management: Optimizing Profitability and Sustainability in Victoria’s Changing Climate -. Farmonaut. https://farmonaut.com/australia/australian-dairy-farm-management-optimizing-profitability-and-sustainability-in-victorias-changing-climate/
Fernández, M. (2019). El Internet de las Granjas. Vaca Pinta, 1–8. https://vacapinta.com/media/files/fichero/vp008_castelan_lr-154-161.pdf
Fernández-Labrada, M., López-Mosquera, M. E., García, L., Barrio, J. C., & López-Fabal, A. (2023a). Hazards of swine slurry: Heavy metals, bacteriology, and overdosing—Physicochemical models to predict the nutrient value. Animal Science Journal, 94(1), e13849. https://doi.org/10.1111/ASJ.13849
Fernández-Labrada, M., López-Mosquera, M. E., García, L., Barrio, J. C., & López-Fabal, A. (2023b). Hazards of swine slurry: Heavy metals, bacteriology, and overdosing—Physicochemical models to predict the nutrient value. Animal Science Journal, 94(1), e13849. https://doi.org/10.1111/ASJ.13849
Fondo Europeo Agrícola de Desarrollo Rural [FEADER]. (2018). UNIÓN EUROPEA Estiércoles. Caracterización, analítica e implicaciones sobre su aprovechamiento fertilizante. Dirección General de Desarrollo Rural Centro de Transferencia Agroalimentaria, 262, 2–40.
Franco, K., Leyda, L., & Kallen, S. (2020). Life Smart Fertirrigation: Integrated Pig Manure Processing for Direct Injection of Organic Liquid Fertilizer into Irrigation Systems. Proceedings 2019, Vol. 30, Page 92, 30(1), 92. https://doi.org/10.3390/PROCEEDINGS2019030092
Fredrick Oge, O., Adewale Iyaniwura, A., Friday Nweke, N., Alex Ochai, O., Chimdi Cynthia, I., Chinedu Ele, O., & Fredrick Ogeh, O. (2024). Safeguarding ecosystems using innovative approaches to manage animal wastes. Bio-Research, 22(1), 2274–2291. https://doi.org/10.4314/BR.V22I1.6
Fu, X., Guo, X., Liu, L., Fu, Q., & Zhou, L. (2023a). Evolution of humus dynamics in composting of swine manure combined with wood vinegar. Environmental Research Communications, 5(11), 115012. https://doi.org/10.1088/2515-7620/AD0B27
Fu, X., Guo, X., Liu, L., Fu, Q., & Zhou, L. (2023b). Evolution of humus dynamics in composting of swine manure combined with wood vinegar. Environmental Research Communications, 5(11), 115012. https://doi.org/10.1088/2515-7620/AD0B27
Garrido, O. (2022, April). Uso del efluente de los biodigestores a partir de los residuales porcinos como abonos orgánicos. Hombre, Ciencia y Tecnología, 78–85.
Girotto, F., & Cossu, R. (2017). Animal Waste: Opportunities and Challenges. 1–13. https://doi.org/10.1007/978-3-319-48006-0_1
Gómez-Brandón, M., Juárez, M. F.-D., Domínguez, J., Insam, H., Gómez-Brandón, M., Juárez, M. F.-D., Domínguez, J., & Insam, H. (2013). Animal Manures: Recycling and Management Technologies. Biomass Now - Cultivation and Utilization. https://doi.org/10.5772/53454
Gosgot, W., Rascón, J., Barrena, M., Ordinola, C., Oliva, M., & Montenegro, Y. (2021). Producción de biogás a partir de estiércol de gallina, utilizando colectores solares. Revista de Investigación de Agroproducción Sustentable, 5(2), 44. https://doi.org/10.25127/APS.20212.768
Gourlez, E., Beline, F., Dourmad, J. Y., Rigo Monteiro, A., Charra, M., & de Quelen, F. (2024). Data quantifying the behaviour of macro and trace elements along the feed – manure – treated waste continuum in pig production. Data in Brief, 52, 110053. https://doi.org/10.1016/J.DIB.2024.110053
Güllich, R., & Matos, R. (2019). Fronteiras para a Sustentabilidade. Fronteiras Para a Sustentabilidade. https://doi.org/10.22533/AT.ED.546190110
Guo, H. N., Wang, L. X., & Liu, H. T. (2020). Potential mechanisms involving the immobilization of Cd, As and Cr during swine manure composting. Scientific Reports 2020 10:1, 10(1), 1–9. https://doi.org/10.1038/s41598-020-73894-4
Gupta, K., Aneja, K., & Rana, D. (2016). Current status of cow dung as a bioresource for sustainable development. Bioresources and Bioprocessing, 3(1), 1–11. https://doi.org/10.1186/S40643-016-0105-9/METRICS
Gurmessa, B., Ashworth, A. J., Yang, Y., Savin, M., Moore, P. A., Ricke, S. C., Corti, G., Pedretti, E. F., & Cocco, S. (2021a). Variations in bacterial community structure and antimicrobial resistance gene abundance in cattle manure and poultry litter. Environmental Research, 197, 111011. https://doi.org/10.1016/J.ENVRES.2021.111011
Gurmessa, B., Ashworth, A. J., Yang, Y., Savin, M., Moore, P. A., Ricke, S. C., Corti, G., Pedretti, E. F., & Cocco, S. (2021b). Variations in bacterial community structure and antimicrobial resistance gene abundance in cattle manure and poultry litter. Environmental Research, 197, 111011. https://doi.org/10.1016/J.ENVRES.2021.111011
Gurmessa, B., Ashworth, A. J., Yang, Y., Savin, M., Moore, P. A., Ricke, S. C., Corti, G., Pedretti, E. F., & Cocco, S. (2021c). Variations in bacterial community structure and antimicrobial resistance gene abundance in cattle manure and poultry litter. Environmental Research, 197, 111011. https://doi.org/10.1016/J.ENVRES.2021.111011
Gutman, Á. (2023). Tecnologías de las energías renovables: explicadas para no especialistas (1st ed.). www.edutecne.utn.edu.ar
Halmaciu, I., Lonel, I., & Miutescu, M. (2024). Influence upon Biogas Production of the C/N Ratio and the Heavy Metal Incidence in the Manure Composition. Environmental and Earth Sciences. https://doi.org/10.20944/PREPRINTS202402.0949.V1
He, Z., Griffin, T. S., & Honeycutt, C. W. (2004). Phosphorus distribution in dairy manures. Journal of Environmental Quality, 33(4), 1528–1534. https://doi.org/10.2134/JEQ2004.1528
Hickmann, F., Andretta, I., Cappelaere, L., Goyette, B., Létourneau, M., & Rajagopal, R. (2023). 47 Feeding Pigs with Low Crude Protein Diets: Impact of Pig Manure Nitrogen Content on Biogas Production and Digestate Quality. Journal of Animal Science, 101(Supplement_2), 47–48. https://doi.org/10.1093/JAS/SKAD341.052
Hoyos-Sebá, J. J., Arias, N. P., Salcedo-Mendoza, J., & Aristizábal-Marulanda, V. (2024a). Animal manure in the context of renewable energy and value-added products: A review. Chemical Engineering and Processing - Process Intensification, 196, 109660. https://doi.org/10.1016/J.CEP.2023.109660
Hoyos-Sebá, J. J., Arias, N. P., Salcedo-Mendoza, J., & Aristizábal-Marulanda, V. (2024b). Animal manure in the context of renewable energy and value-added products: A review. Chemical Engineering and Processing - Process Intensification, 196, 109660. https://doi.org/10.1016/J.CEP.2023.109660
Hozad, A., & Abendroth, C. (2025). Electro-composting: an emerging technology. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.16.633320
Hu, Y. ying, Wu, J., Li, H. zhi, Poncin, S., Wang, K. jun, & Zuo, J. e. (2019). Study of an enhanced dry anaerobic digestion of swine manure: Performance and microbial community property. Bioresource Technology, 282, 353–360. https://doi.org/10.1016/J.BIORTECH.2019.03.014
Ibarra, R., Bolaños, D., & Cumbal, L. (2024). Evaluation of Physicochemical Parameters, Carbamazepine and Diclofenac as Emerging Pollutants in the Machángara River, Quito, Ecuador. Water 2024, Vol. 16, Page 1026, 16(7), 1026. https://doi.org/10.3390/W16071026
Iqbal, A., He, L., Ali, I., Ullah, S., Khan, A., Khan, A., Akhtar, K., Wei, S., Zhao, Q., Zhang, J., & Jiang, L. (2020). Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PloS One, 15(10). https://doi.org/10.1371/JOURNAL.PONE.0238934
Irfan, M., Mehmood, S., Mehmud, A., & Ahmad, A. (2021). An Assessment of Chemical and Microbiological Properties of Different Types of Poultry Waste Compost Prepared by Bin and Windrow Composting System. https://doi.org/10.6084/M9.FIGSHARE.14306679
Islam, N., Rashid, M. M., Pasandideh, F., Ray, B., Moore, S., & Kadel, R. (2021). A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming. Sustainability 2021, Vol. 13, Page 1821, 13(4), 1821. https://doi.org/10.3390/SU13041821
Jain, A., & Bagherwal, R. (2017). Design and implementation of a smart solid waste monitoring and collection system based on Internet of Things. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017, 1–5. https://doi.org/10.1109/ICCCNT.2017.8204165
Ji, J. L., Chen, F., Liu, S., Yang, Y., Hou, C., & Wang, Y. Z. (2022). Co-production of biogas and humic acid using rice straw and pig manure as substrates through solid-state anaerobic fermentation and subsequent aerobic composting. Journal of Environmental Management, 320, 115860. https://doi.org/10.1016/J.JENVMAN.2022.115860
Jordán, Y. (2022). Producción de biogás a partir de suero salado de queserías y estiércol de cuy en Santa Rosa de Quives. South Sustainability, 3(2), e063–e063. https://doi.org/10.21142/SS-0302-2022-E063
Kacprzak, M., Malińska, K., Grosser, A., Sobik-Szołtysek, J., Wystalska, K., Dróżdż, D., Jasińska, A., & Meers, E. (2023). Cycles of carbon, nitrogen and phosphorus in poultry manure management technologies – environmental aspects. Critical Reviews in Environmental Science and Technology, 53(8), 914–938. https://doi.org/10.1080/10643389.2022.2096983
Kadir, L., Saber, M., Khelifi, A., & Yassaa, N. (2024). Bio-valorization of Cow Dung for Green Renewable Energy. Journal of Renewable Energies, 2024(Special Issue), 143-149-143–149. https://doi.org/10.54966/JREEN.V1I1.1254
Kasumba, J., Appala, K., Agga, G. E., Loughrin, J. H., & Conte, E. D. (2020a). Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 55(2), 135–147. https://doi.org/10.1080/03601234.2019.1667190
Kasumba, J., Appala, K., Agga, G. E., Loughrin, J. H., & Conte, E. D. (2020b). Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics. Journal of Environmental Science and Health, Part B, 55(2), 135–147. https://doi.org/10.1080/03601234.2019.1667190
Keskinen, R., Suojala-Ahlfors, T., Sarvi, M., Hagner, M., Kaseva, J., Salo, T., Uusitalo, R., & Rasa, K. (2020). Granulated broiler manure based organic fertilizers as sources of plant available nitrogen. Environmental Technology & Innovation, 18, 100734. https://doi.org/10.1016/J.ETI.2020.100734
Khan, N., Kamaruddin, M. A., Sheikh, U. U., Bakht, M. P., & Mohd, M. N. H. (2024). Climate-Smart Agriculture: A Path to Sustainable Food Production. Journal of Natural Science Review , 2(Special.Issue), 130–147. https://doi.org/10.62810/JNSR.V2ISPECIAL.ISSUE.121
Kim, W., Yang, S., Lee, K., & Lee, S. (2021). Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes. Korean Association for Livestock Housing and Environment, 17(1), 49–54. https://doi.org/10.1007/S10668-020-00991-9
Kiyasudeen, S., & Ismail, A. (2015). Characterization of Fresh Cattle Wastes Using Proximate, Microbial and Spectroscopic Principles. J. Agric. & Environ. Sci, 15(8), 1700–1709. https://doi.org/10.5829/idosi.aejaes.2015.15.8.235
Kok, H., Shamsuddin, M., & Aqsha, A. (2020). Anaerobic Treatment of Chicken Manure Co-digested with Sawdust. Lecture Notes in Mechanical Engineering, 741–748. https://doi.org/10.1007/978-981-15-5753-8_69
Kusmiyati, K., Wijaya, D. K., Hartono, B. J. R., Shidik, G. F., & Fudholi, A. (2023a). Harnessing the power of cow dung: Exploring the environmental, energy, and economic potential of biogas production in Indonesia. Results in Engineering, 20, 101431. https://doi.org/10.1016/J.RINENG.2023.101431
Kusmiyati, K., Wijaya, D. K., Hartono, B. J. R., Shidik, G. F., & Fudholi, A. (2023b). Harnessing the power of cow dung: Exploring the environmental, energy, and economic potential of biogas production in Indonesia. Results in Engineering, 20, 101431. https://doi.org/10.1016/J.RINENG.2023.101431
Kuziemska, B., Klej, P., Wysokinski, A., & Rudziński, R. (2022). Effect of Zinc along with Organic Fertilizers on Phosphorus Uptake and Use Efficiency by Cocksfoot (Dactylis glomerata L.). Agriculture 2022, Vol. 12, Page 1424, 12(9), 1424. https://doi.org/10.3390/AGRICULTURE12091424
Lavanya, R., Abuthakir, S., & Ahamed, D. (2023). IoT-Enhanced Livestock Monitoring for Animal Health and Productivity. International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, 504–509. https://doi.org/10.1109/ICSCNA58489.2023.10370264
Lezoche, M., Panetto, H., Kacprzyk, J., Hernandez, J. E., & Alemany Díaz, M. M. E. (2020). Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry, 117, 103187. https://doi.org/10.1016/J.COMPIND.2020.103187
Li, J., Xu, Y., Zhang, Y., Liu, Z., Gong, H., Fang, W., OUYang, Z., Li, W., & Xu, L. (2024). Quantifying the mitigating effect of organic matter on heavy metal availability in soils with different manure applications: A geochemical modelling study. Ecotoxicology and Environmental Safety, 276, 116321. https://doi.org/10.1016/J.ECOENV.2024.116321
Linsong, H., Lianhua, L., Ying, L., Changrui, W., & Yongming, S. (2022). Bioaugmentation with methanogenic culture to improve methane production from chicken manure in batch anaerobic digestion. Chemosphere, 303, 135127. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135127
Liu, B., Zhou, H., Li, L., Ai, J., He, H., Yu, J., Li, P., & Zhang, W. (2023). Environmental impact and optimization suggestions of pig manure and wastewater treatment systems from a life cycle perspective. Science of The Total Environment, 905, 167262. https://doi.org/10.1016/J.SCITOTENV.2023.167262
Lora-Ariza, B., Piña, A., & Donado, L. D. (2024). Assessment of groundwater quality for human consumption and its health risks in the Middle Magdalena Valley, Colombia. Scientific Reports 2024 14:1, 14(1), 1–17. https://doi.org/10.1038/s41598-024-61259-0
Lozano Ruíz, A. C., Sánchez Montealegre, C. A., & Ardila Marín, J. G. (2020). Diseño de un biodigestor de excremento para generación de biogás vía simulación con el software SIMBA®. Ingenieria y Región, ISSN 1657-6985, No. 24, 2020, Págs. 72-85, 24, 72–85. https://doi.org/10.25054/22161325.2779
Mahlknecht, J., Torres-Martínez, J. A., Kumar, M., Mora, A., Kaown, D., & Loge, F. J. (2023). Nitrate prediction in groundwater of data scarce regions: The futuristic fresh-water management outlook. Science of The Total Environment, 905, 166863. https://doi.org/10.1016/J.SCITOTENV.2023.166863
Majeed M. Ali Jaaf, S., Li, Y., Günal, E., Ali El Enshasy, H., Salmen, S. H., & Sürücü, A. (2022). The impact of corncob biochar and poultry litter on pepper (Capsicum annuum L.) growth and chemical properties of a silty-clay soil. Saudi Journal of Biological Sciences, 29(4), 2998–3005. https://doi.org/10.1016/J.SJBS.2022.01.037
Maruthamuthu, T., Karuppusamy, S., Veeramalai, R., Nagarajan, M., Manika Ragavan, P., Santiago, M., Nallathambi, B., Dharmalingam, A. P. S., Radhakrishnan, K., Ramasamy, A., Ramasamy, S. R. S., & Aranganoor Kannan, T. (2024). Physicochemical Characterization of Broiler Poultry Litter from Commercial Broiler Poultry Operation in Semiarid Tropics of India. Agriculture 2024, Vol. 14, Page 1708, 14(10), 1708. https://doi.org/10.3390/AGRICULTURE14101708
Matthews, K. R. (2023). Manure management. The Produce Contamination Problem: Causes and Solutions, Third Edition, 47–66. https://doi.org/10.1016/B978-0-12-819524-6.00001-X
Miralles De Imperial Hornedo, R., Mar, M., Arroyo, D., Manso, G., González Gullón, I., Valero, J., & Sánchez, M. (2017). Efecto del residual de estiércol avícola o residual de fertilizante mineral en el rendimiento y la calidad de camelina (Camelina sativa L. Crantz) Effect of residual poultry manure or residual mineral fertilizer on yield and quality of camelina (Camelina sativa L. Crantz). Rev Mex Cienc Pecu, 8(4), 353. https://doi.org/10.22319/rmcp.v8i4.4196
Mkhonza, N. P., Buthelezi-Dube, N. N., & Muchaonyerwa, P. (2020). Phosphorus availability and fractions in a humic soil amended with poultry manure and lime. South African Journal of Plant and Soil, 37(5), 361–366. https://doi.org/10.1080/02571862.2020.1797196
Mohammed, M., Al-Mukhtar, O., Belkair, A., Al, O., Hassan, R., Jirhiman, A., & Ahmeedah, A. (2022). Improving Biogas Production from Animal Manure By Batch Anaerobic Digestion. https://doi.org/10.21203/RS.3.RS-1627319/V1
Mohd, S., Aqsha, A., Mhamsudin, R., Kee, M., Osman, N., & Tijani, M. (2023). Technical Trends in Biogas Production from Chicken Manure. Sustainable Materials and Technology, 145–182. https://doi.org/10.1007/978-981-19-4120-7_6
Mojica, C., Vidal, E., Rueda, B., & Acosta, D. (2016). Estudio de las características físico-químicas de residuos orgánicos para su uso potencial en la producción de biogás. Artículo Revista de Energía Química y Física Marzo, 3(6), 15–22. www.ecorfan.org/bolivia
Morais, E. G. de, Silva, C. A., Gao, S., Melo, L. C. A., Lago, B. C., Teodoro, J. C., & Guilherme, L. R. G. (2024). Empirical Correlation between Electrical Conductivity and Nitrogen Content in Biochar as Influenced by Pyrolysis Temperature. Nitrogen 2024, Vol. 5, Pages 288-300, 5(2), 288–300. https://doi.org/10.3390/NITROGEN5020019
Moreroa, M., & Motshekga, S. C. (2024). The feasibility of using biogas generated from livestock manure as an alternative energy source: A South African perspective. Journal of Energy in Southern Africa, 35(1), 1–16. https://doi.org/10.17159/2413-3051/2023/V34I1A17021
Morgan, J. (2014, April 9). A Simple Explanation Of “The Internet Of Things.” https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/
Muñoz, J., Nava, E., Cerano, J., Constante, V., Inzunza, M., & Macías, H. (2021). Dinámica del nitrógeno y el carbón orgánico en el proceso de descomposición de una composta con estiércol de bovino y residuos de cosecha. Agrofaz: Publicación Semestral de Investigación Científica, ISSN 1665-8892, Vol. 3, No. 2, 2021, Págs. 19-26, 3(2), 19–26. https://dialnet.unirioja.es/servlet/articulo?codigo=8325239&info=resumen&idioma=ENG
Mutungwazi, A., Ijoma, G. N., Ogola, H. J. O., & Matambo, T. S. (2022a). Physico-Chemical and Metagenomic Profile Analyses of Animal Manures Routinely Used as Inocula in Anaerobic Digestion for Biogas Production. Microorganisms 2022, Vol. 10, Page 671, 10(4), 671. https://doi.org/10.3390/MICROORGANISMS10040671
Mutungwazi, A., Ijoma, G. N., Ogola, H. J. O., & Matambo, T. S. (2022b). Physico-Chemical and Metagenomic Profile Analyses of Animal Manures Routinely Used as Inocula in Anaerobic Digestion for Biogas Production. Microorganisms 2022, Vol. 10, Page 671, 10(4), 671. https://doi.org/10.3390/MICROORGANISMS10040671
Njoku, N., Chima, I., & Uba, B. (2019). Influence of physicochemical and microbiological properties on the composting of agro wastes using cow dung as a booster. Animal Research International, 16(1), 3238–3246. https://doi.org/10.4314/ARI.V16I1
Nunes, E. H., Gonçalves, J. C., Pecoraro, C. A., Bumbieris Junior, V. H., & Filho, J. T. (2023). Nutrients in swine manure for use as soil fertilizer. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(11), 858–863. https://doi.org/10.1590/1807-1929/AGRIAMBI.V27N11P858-863
Ochai, M. I., Aremu, J. K., & Agada, E. E. (2024). Effects of poultry litter on soil physico-chemical properties for crop production in Kauru LOCAL Government Area, Kaduna State, Nigeria. Fudma Journal of Sciences, 8(6), 111–117. https://doi.org/10.33003/FJS-2024-0806-2757
Opio, C., & Sangoluisa, P. (2022). Innovaciones en el sector ganadero. In Innovaciones en el sector ganadero. FAO; IICA; https://doi.org/10.4060/CC0876ES
Organización para la Alimentación y la Agricultura [FAO]. (2019). Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. Extract from the Report High Level Panel of Experts on Food Security and Nutrition Extract from the Report 1 Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition Summary and Recommendations. HLPE, 1–13. www.fao.org/cfs/cfs-hlpe.
Oxendine, A., Walsh, A. A., Young, T., Dixon, B., Hoke, A., Rogers, E. E., Lee, M. D., & Maurer, J. J. (2023). Conditions Necessary for the Transfer of Antimicrobial Resistance in Poultry Litter. Antibiotics 2023, Vol. 12, Page 1006, 12(6), 1006. https://doi.org/10.3390/ANTIBIOTICS12061006
Pacheco, I., García, C., Meza, C., Vaca, F., Díaz, C., Méndez, C., Tarango, L., Valenzuela, L., & Vásquez, J. (2022). Explorando la microbiota bacteriana fecal bovina en la Reserva de la Biosfera de Mapimí, norte de México. Rev Mex Cienc Pecu, 13(4), 910–927. https://doi.org/10.22319/rmcp.v13i4.6138
Padilla, D., Dueños, J., Mahlknecht, J., Mora, A., Kumar, M., Ornelas, N., Mejía, S., Navarro, C., & Bhattacharya, P. (2024). Arsenic and fluoride in groundwater triggering a high risk: Probabilistic results using Monte Carlo simulation and species sensitivity distribution. Chemosphere, 359, 142305. https://doi.org/10.1016/J.CHEMOSPHERE.2024.142305
Palacios, I., Hernández, G., Benítez, E., & Morgado, J. (2024). Monitoreo de indicadores extensivos del OUAES para identificar entornos saludables en la ZMC y ZMO: Córdoba y Orizaba (2018-2023). Revista Electrónica de La Coordinación Universitaria de Observatorios de La Universidad Veracruzana, 17, 78–92.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/BMJ.N71
Pantelopoulos, A., & Aronsson, H. (2021a). Two-stage separation and acidification of pig slurry – Nutrient separation efficiency and agronomical implications. Journal of Environmental Management, 280, 111653. https://doi.org/10.1016/J.JENVMAN.2020.111653
Pantelopoulos, A., & Aronsson, H. (2021b). Two-stage separation and acidification of pig slurry – Nutrient separation efficiency and agronomical implications. Journal of Environmental Management, 280, 111653. https://doi.org/10.1016/J.JENVMAN.2020.111653
Paucar, C., González, V., Álvarez, H., Madrid, B., de Gracia, C., & Flores, F. (2023a). Aplicación del índice de calidad del agua (ICA) caso de estudio: río jubones, Ecuador. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 1264–1277. https://doi.org/10.37811/CL_RCM.V7I4.6953
Paucar, C., González, V., Álvarez, H., Madrid, B., de Gracia, C., & Flores, F. (2023b). Aplicación del índice de calidad del agua (ICA) caso de estudio: río jubones, Ecuador. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 1264–1277. https://doi.org/10.37811/CL_RCM.V7I4.6953
Paz, H., Ferro, R., & Aguirre, E. (2021). Introducción a granjas inteligentes y generación de energía eléctrica para hacer frente al cambio climático en la Región Andina (1st ed.). Universidad Distrital Francisco José de Caldas.
Peng, N., Zhang, J., Hu, R., Liu, S., Liu, F., Fan, Y., Yang, H., Huang, J., Ding, J., Chen, R., Li, L., He, Z., & Wang, C. (2024). Hidden pathogen risk in mature compost: Low optimal growth temperature confers pathogen survival and activity during manure composting. Journal of Hazardous Materials, 480, 136230. https://doi.org/10.1016/J.JHAZMAT.2024.136230
Peralta, A. V. P., & Brito, Z. R. G. (2024). Literature review of the effect of adding bovine manure on agricultural production. ConcienciaDigital, 7(4), 87–102. https://doi.org/10.33262/concienciadigital.v7i4.3236
Pino, E., Pilay, J., Drouet, A., & Tomala, A. (2025). Biodigestor anaeróbico para la producción de biogás y biofertilizante a partir de residuos porcinos. Revista Alfa, 9(25), 177–190. https://doi.org/10.33996/REVISTAALFA.V9I25.340
Pinos, J., García, J., Peña, L., Gonzalez, C., & Tristán, F. (2012). Impactos y regulaciones ambientales del estiércol generado por los sistemas ganaderos de algunos países de América. Agrociencia, 46(4), 1–12.
Piskun, V., Zolotarov, A., Ponomarova, M., Zolotarva, S., & Yevsiiukov, O. (2024). Utilisation of livestock by-products for resource-saving biogas production in industrial pork production. Scientific Horizons, 27(1), 117–126. https://doi.org/10.48077/SCIHOR1.2024.117
Previdelli, M., Amorim, A., Júnior, J. de L., Moraes, A., & Mendes, A. (2012). Compostagem dos dejetos da bovinocultura de corte: influência do período, do genótipo e da dieta. Revista Brasileira De Zootecnia, 41(5), 1301–1307. https://doi.org/10.1590/S1516-35982012000500030
Ren, Z., Ning, P., Jia, L., Qu, G., Xiong, X., Feng, H., & Zhou, C. (2012). Biogas Production from Cow Manure in an Experimental 20 m3 Reactor with a Jet Mixing System. Advanced Materials Research, 518–523, 3290–3294. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.518-523.3290
Roldán-Reascos, G., Pérez-Lamela, C., de Blas, E., & Simal-Gandara, J. (2024). Water quality indexes and water quality population perception in a rural area in Ecuador. Water Practice and Technology, 19(2), 580–593. https://doi.org/10.2166/WPT.2024.021
Rosas Martínez, V., & Aguilar Rivera, N. (2022). Compostaje para la reducción de excretas de aves (Gallus gallus domesticus). Agronomía Mesoamericana, ISSN-e 2215-3608, ISSN 1021-7444, Vol. 33, No. 1, 2022, 33(1), 24. https://doi.org/10.15517/am.v33i1.44815
Ruiz-Bastidas, R. C., Ochoa-Durán, C., Sanabria, J., & Cadavid-Rodríguez, L. S. (2024). Effect of Ecuadorian natural zeolite on the performance of anaerobic digestion of swine waste in semicontinuous regime. Chemosphere, 352, 141517. https://doi.org/10.1016/J.CHEMOSPHERE.2024.141517
Ruvalcaba, J., Arteaga, R., Domínguez, G., Galindo, A., Salazar, G., Martínez, M., & Delgado, R. (2019). Uso de bacterias ácido lácticas para descontaminación de estiércol porcino mediante ensilaje experimental. Revista Internacional de Contaminación Ambiental, 35(1), 247–257. https://doi.org/10.20937/RICA.2019.35.01.18
Salcido-Domínguez, A. D., & Aguilar-Juárez, O. (2023). Evaluation of the Feasibility of Biogas Production by Anaerobic Digestion from Agro-Industrial Wastes in Los Altos, Jalisco. Green Energy and Technology, 39–53. https://doi.org/10.1007/978-3-031-26813-7_3
Santos, M., & Laranja, R. (2024). Influence of agriculture on surface water quality in three lentic environments in a conservation unit of Brazil. International Journal of Environmental Science and Technology, 21(4), 4295–4306. https://doi.org/10.1007/S13762-023-05296-8/FIGURES/2
Sarfaraz, Q., Silva, L., Drescher, G., Zafar, M., Severo, F., Kokkonen, A., Molin, G., Shafi, M., Shafique, Q., & Solaiman, Z. (2020a). Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Scientific Reports 2020 10:1, 10(1), 1–9. https://doi.org/10.1038/s41598-020-57987-8
Sarfaraz, Q., Silva, L., Drescher, G., Zafar, M., Severo, F., Kokkonen, A., Molin, G., Shafi, M., Shafique, Q., & Solaiman, Z. (2020b). Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Scientific Reports 2020 10:1, 10(1), 1–9. https://doi.org/10.1038/s41598-020-57987-8
Saucedo, S., Arguello, L., Vilela, S., & Ruiz, M. (2024). Uso de fertilizantes químicos en el fomento productivo agrícola del Ecuador. Killkana Técnica, 8(1), 27–38. https://doi.org/10.26871/KILLKANATECNICA.V8I1.1531
Segat, J. C., Alves, P. R. L., Baretta, D., & Cardoso, E. J. B. N. (2020). Ecotoxicological effects of swine manure on Folsomia candida in subtropical soils. Anais Da Academia Brasileira de Ciências, 92, e20180758. https://doi.org/10.1590/0001-3765202020180758
Semenov, M., Zhelezova, A., Ksenofontova, N., Ivanova, E., & Nikitin, D. (2023). Chicken manure as an organic fertilizer: composting technologies and impact on soil properties (a review). Bûlletenʹ Počvennogo Instituta Imeni V.V. Dokučaeva, 115, 160–198. https://doi.org/10.19047/0136-1694-2023-115-160-198
Singh, G., Shamsuddin, M. R., Aqsha, & Lim, S. W. (2018). Characterization of Chicken Manure from Manjung Region. IOP Conference Series: Materials Science and Engineering, 458(1), 012084. https://doi.org/10.1088/1757-899X/458/1/012084
Sossa, E. L., Agbangba, C. E., Koura, T. W., Ayifimi, O. J., Houssoukpèvi, I. A., Bouko, N. D. B., Yalinkpon, F., & Amadji, G. L. (2024). Dynamics of co-composting of pineapple harvest and processing residues with poultry litter and compost quality. Scientific Reports 2024 14:1, 14(1), 1–20. https://doi.org/10.1038/s41598-024-66335-z
Sousa, I., Pereira, A., Carraro, A., & Santos, N. (2021). Energy potential of biogas from pig farms in the state of minas gerais, brazil. https://doi.org/10.6084/M9.FIGSHARE.14279700
Souvannasouk, V., Singthong, O., Sayavongsa, P., Meas, S., Phaxaisithidet, T., & Fongsamouth, S. (2023). Revolutionizing biogas generation: Polyethylene tubular digesters for household pig farms. Maejo International Journal of Energy and Environmental Communication (MIJEEC), 5(1), 6–13. https://doi.org/10.54279/MIJEEC.V5I1.250029
Stroparo, E., Winiewski dos Santos, G., Litchacowki, J., Mazur, D., & Schirmer, W. (2020). Degradação de resíduos vegetais melhorados com esterco bovino e caprino e análise de toxicidade do chorume produzido utilizando vermicompostagem. Science and Technology, 12(1), 124–129. https://scispace.com/papers/degradacao-de-residuos-vegetais-melhorados-com-esterco-5b9dt9qzum
Sun, H., Palaoag, T., & Quan, Q. (2024). Design of Pig Farm Environment Regulation and Video Monitoring System Based on Livestock Internet of Things Orbital Inspection Robot. Proceedings - 2024 7th International Conference on Communication Engineering and Technology, ICCET 2024, 25–30. https://doi.org/10.1109/ICCET62255.2024.00011
Syam, D., Sridevi, A., & Narasimha, G. (2011). Microbial and enzyme activities in cattle dung composed soil . Environmental Science, 7(10). https://scispace.com/papers/microbial-and-enzyme-activities-in-cattle-dung-composed-soil-4qrpxmhkto
Tawfik, A., Eraky, M., Osman, A. I., Ai, P., Zhou, Z., Meng, F., & Rooney, D. W. (2023). Bioenergy production from chicken manure: a review. Environmental Chemistry Letters 2023 21:5, 21(5), 2707–2727. https://doi.org/10.1007/S10311-023-01618-X
Thepsilvisut, O., Chutimanukul, P., Sae-Tan, S., & Ehara, H. (2022). Effect of chicken manure and chemical fertilizer on the yield and qualities of white mugwort at dissimilar harvesting times. PLOS ONE, 17(4), e0266190. https://doi.org/10.1371/JOURNAL.PONE.0266190
Thomas, J., & Sunil, S. (2023). Waste Valorization Technologies for Egg and Broiler Industries. Waste Valorization for Value-Added Products, 250–272. https://doi.org/10.2174/9789815123074123010014
Torres V, M., Ochoa-Álvarez, N. A., Nieto-Garibay, A., Murillo-Amador, B., Lavastida P., G., Alfonso, P., Torres V, M., Ochoa-Álvarez, N. A., Nieto-Garibay, A., Murillo-Amador, B., Lavastida P., G., & Alfonso, P. (2023). Inactivación de patógenos en residuos avícolas mediante el compostaje. Revista de Investigaciones Veterinarias Del Perú, 34(4), 24488. https://doi.org/10.15381/RIVEP.V34I4.24488
Tovar, J., Solórzano, J. de los S., Badillo, A., & Rodríguez, G. (2019). Internet de las cosas aplicado a la agricultura: estado actual. Lámpsakos, 22, 86–105. https://doi.org/10.21501/21454086.3253
Tyagi, M., Kumar, A., Guleri, S., & Gaurav, N. (2024). Transforming agriculture: the rise of smart farming. Futuristic Trends in Agriculture Engineering & Food Sciences Volume 3 Book 19, 3(19), 150–178. https://doi.org/10.58532/V3BCAG19P4CH6
Wahidah, M., Faiza, N. N., Nugraeni, C. D., & Purwanto, M. (2022). Small-Scale Biogas Production: Utilization of Chicken Manure Waste (Gallus gallus domesticus). AIP Conference Proceedings, 2638(1). https://doi.org/10.1063/5.0104604/2831117
Wang, J., & Tao, J. (2020). An analysis of farmers’ resource disposal methods for livestock and poultry waste and their determinants. Chinese Journal of Population Resources and Environment, 18(1), 49–58. https://doi.org/10.1016/j.cjpre.2021.04.017
Wang, S., O’Connor, L., Wang, Z., Jiang, Y., Morris, D., Cahill, N., Hu, Z., & Zhan, X. (2020). Inactivation of carbapenemase-producing Enterobacterales during anaerobic co-digestion of food waste and pig manure. Bioresource Technology Reports, 11, 100455. https://doi.org/10.1016/J.BITEB.2020.100455
Wang, Y., Yang, L., Chen, F., Liu, W., Burns, R., & Zhuang, J. (2024). Optimum thermal treatment for removing antibiotic resistance genes and retaining nutrients in poultry broiler manure. Environmental Technology & Innovation, 36, 103864. https://doi.org/10.1016/J.ETI.2024.103864
Wi, J., Lee, S., & Ahn, H. (2023). Influence of Dairy Manure as Inoculum Source on Anaerobic Digestion of Swine Manure. Bioengineering 2023, Vol. 10, Page 432, 10(4), 432. https://doi.org/10.3390/BIOENGINEERING10040432
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/J.AGSY.2017.01.023
Wu, N., Wang, X., Yan, Z., Xu, X., Xie, S., & Liang, J. (2021a). Transformation of pig manure by passage through the gut of black soldier fly larvae (Hermetia illucens): Metal speciation, potential pathogens and metal-related functional profiling. Ecotoxicology and Environmental Safety, 211, 111925. https://doi.org/10.1016/J.ECOENV.2021.111925
Wu, N., Wang, X., Yan, Z., Xu, X., Xie, S., & Liang, J. (2021b). Transformation of pig manure by passage through the gut of black soldier fly larvae (Hermetia illucens): Metal speciation, potential pathogens and metal-related functional profiling. Ecotoxicology and Environmental Safety, 211, 111925. https://doi.org/10.1016/J.ECOENV.2021.111925
Wu, X., Zhu, J., Cheng, J., & Zhu, N. (2015). Optimization of Three Operating Parameters for a Two-Step Fed Sequencing Batch Reactor (SBR) System to Remove Nutrients from Swine Wastewater. Applied Biochemistry and Biotechnology, 175(6), 2857–2871. https://doi.org/10.1007/S12010-014-1467-0
Xie, S., He, X., Alshehri, M. A., Abou-Elwafa, S. F., & Zhang, T. (2024). Elevated effect of hydrothermal treatment on phosphorus transition between solid-liquid phase in swine manure. Results in Engineering, 24, 102887. https://doi.org/10.1016/J.RINENG.2024.102887
Xin, Y., Cao, H., Yuan, Q., & Wang, D. (2017). Two-step gasification of cattle manure for hydrogen-rich gas production: Effect of biochar preparation temperature and gasification temperature. Waste Management, 68, 618–625. https://doi.org/10.1016/J.WASMAN.2017.06.007
Xing, B. S., Han, Y., Wang, X. C., Cao, S., Wen, J., & Zhang, K. (2020). Acclimatization of anaerobic sludge with cow manure and realization of high-rate food waste digestion for biogas production. Bioresource Technology, 315, 123830. https://doi.org/10.1016/J.BIORTECH.2020.123830
Yadav, K., Banik, C., & Bakshi, S. (2025). Biochar, zeolite, and ferric chloride effectively separate phosphorus and nitrogen (plus potassium) in swine manure: A coagulation-flocculation-sedimentation approach. Chemosphere, 374, 144214. https://doi.org/10.1016/J.CHEMOSPHERE.2025.144214
Yong, C. (2011). Study on Processing Technology and Critical Equipment in Treatment of Livestock and Poultry Wastes (2011) | Chen Yong-sheng | 1 Citations. Chinese Agricultural Mechanization . https://scispace.com/papers/study-on-processing-technology-and-critical-equipment-in-mdwug41ta1
You, Z., Zhang, S., Kim, H., Chiang, P. C., Sun, Y., Guo, Z., & Xu, H. (2018). Effects of Corn Stover Pretreated with NaOH and CaO on Anaerobic Co-Digestion of Swine Manure and Corn Stover. Applied Sciences 2019, Vol. 9, Page 123, 9(1), 123. https://doi.org/10.3390/APP9010123
Yousif, Y., Luo, Y. sen, Sun, S. S., Yang, X., Ji, H. Y., & Wang, R. L. (2023). Phytochemical and underlying mechanism of Mikania micrantha Kunth on antibiotic resistance genes, and pathogenic microbes during chicken manure composting. Bioresource Technology, 367, 128241. https://doi.org/10.1016/J.BIORTECH.2022.128241
Zambrano R. C., & Plaza, N. (2024). Impacto de las políticas agrícolas en el crecimiento económico del Ecuador. MQRInvestigar , 8(2), 3914–3934. https://doi.org/10.56048/MQR20225.8.2.2024.3914-3934
Zhao, S., Chen, W., Liu, M., Lv, H., Liu, Y., & Niu, Q. (2022). Biogas production, DOM performance and microbial community changes in anaerobic co-digestion of chicken manure with Enteromorpha and green waste. Biomass and Bioenergy, 158, 106359. https://doi.org/10.1016/J.BIOMBIOE.2022.106359
Zige, D., & Omeje, F. (2023). Antibiotics Profile and Public Health Implication of Pathogenic Enteric Bacteria Associated With Poultry Stool. International Journal of Pathogen Research, 12(2), 9–15. https://doi.org/10.9734/IJPR/2023/V12I2221
Zobeashia, S., Abioye, P., Ijah, U., & Oyewole, O. (2021). Identification and characterization of microbial community of anaerobic digested poultry litter. Journal of Phytomedicine and Therapeutics, 20(1), 568–580. https://doi.org/10.4314/JOPAT.V20I1.7
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/BMJ.N71
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mayra Zambrano; Carlos Banchón

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
