Computational system for identifying sinusitis in Computed Tomography (CT) scans
DOI:
https://doi.org/10.33448/rsd-v14i9.49476Keywords:
Computed tomography, Sinusitis, Artificial inteligence, Imaging.Abstract
Introduction: Sinusitis is an inflammation of the paranasal sinuses, with high incidence and potential complications when associated with other respiratory diseases. During the Covid-19 pandemic, case numbers decreased but lethality increased. Pollution, especially in industrial areas, exacerbates the incidence. Objective: To develop advanced imaging techniques to improve sinusitis diagnosis through the analysis of computed tomography scans. Methods: Application of artificial intelligence, particularly Machine Learning, and object detection techniques to identify structural changes in axial computed tomography images of the paranasal sinuses. Expected Results: Faster and more accurate diagnosis, contributing to the optimization of the diagnostic process and reduction of associated clinical complications. Conclusion: AI-based methods represent an important tool to enhance sinusitis diagnosis, enabling early interventions and better clinical management.
References
Abdel-Halim, A. & Luijkx, T. (2014). Isolated sphenoethmoidal pattern sinusitis. https://www.researchgate.net/publication/355604639_Isolated_sphenoethmoidal_pattern_sinusitis. https://doi.org/10.53347/rID-31665.
Asadov, D. (2022). Chronic maxillary sinusitis with a foreign body - dental filling material. Doi: https://doi.org/10.53347/rID-7811.
Ashraf, A. (2024). Skull bone fracture mimic. Case study, Radiopaedia.org.
https://doi.org/10.53347/rID-160172.
Boers. E., Barrett, M., Su, J. G. et al. (2023). Global Burden of Chronic Obstructive Pulmonary Disease Through 2050. JAMA Netw Open. 6(12):e2346598. doi:10.1001/jamanetworkopen.2023.46598.
Borji, A. et al. (2019). Salient object detection: A survey. Computational Visual Media. 5(2), 117–50. Doi: https://doi.org/10.48550/arXiv.1411.5878.
Braga, A. V., Lins, A. F., Soares, L. S., Fleury, L. G., Carvalho, J. C. & Prado, R. S. (2019). Machine learning: O Uso da Inteligência Artificial na Medicina/ Machine learning: The Use of Artificial Intelligence in Medicine. Braz. J. Develop. 2019 Sep. 27.
BVS. (2024). Sinusite. Biblioteca Virtual em Saúde (BVS). https://bvsms.saude.gov.br/sinusite/.
Cuete, D. (2014). Chronic maxillary sinusitis. Case study. Radiopaedia.org https://doi.org/10.53347/rID-27879.
Di Muzio, B. (2015) Allergic fungal sinusitis. Case study, Radiopaedia.org. https://doi.org/10.53347/rID-41382.
Dixon A. (2014). Chronic maxillary sinusitis. Case study. Radiopaedia.org. https://doi.org/10.53347/rID-32524.
Dwyer, B., Nelson, J., Hansen, T., et. al. (2024). Roboflow (Version 1.0) [Software]. https://roboflow.com. computer vision.
Elfeky, M. (2019). Chronic rhinosinusitis. Case study, Radiopaedia.org https://doi.org/10.53347/rID-65079.
Esteva, A. et al. (2019). A guide to deep learning in healthcare. Nature Medicine. 25, 24–9.
Fernandes Neulls, T. et al. (2022). Plantas medicinais utilizadas para tratamento da sinusite no brasil: uma revisão de literatura. SciGen. 3(1). https://scientiageneralis.com.br/index.php/SG/article/view/389.
Gaillard F. (2008). Mucoperiosteal hypertrophy: chronic sinusitis. Case study. https://doi.org/10.53347/rID-4868.
Hafiz, A. M., & Bhat, G. M. (2020). A survey on instance segmentation: state of the art. International Journal of Multimedia Information Retrieval. doi:10.1007/s13735-02000195-x.
He, K. et al. (2017). Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). https://ieeexplore.ieee.org/document/8237584.
Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems. 60(6), 84-90. https://doi.org/10.1145/3065386.
Marques, C. P. C. et al. (2022). Epidemiologia da Sinusite Crônica no Brasil, de 2016 a 2020. Research, Society and Development. 11(11), e203111132072.
Maurici, R. (2023). What happened to non-SARS-CoV-2 respiratory diseases during the pandemic? Jornal Brasileiro de Pneumologia. 49(1).
Nardocci, A. C. et al. (2013). Poluição do ar e doenças respiratórias e cardiovasculares: Estudo de séries temporais em Cubatão, São Paulo, Brasil. Cadernos de Saude Publica. 29(9), 1867–76.
Nemattalla, W., Guan, H., Kumar, K. et al. (2012). Allergic fungal sinusitis. Reference article, Radiopaedia.org. https://doi.org/10.53347/rID-18487.
O'Donnell, C. (2014). Posterior frontal sinus erosion following chronic sinusitis. Case study, Radiopaedia.org. https://doi.org/10.53347/rID-30169.
Oliveira, M. C. et al. (2024). O uso da inteligência artificial na detecção precoce do câncer de mama: uma revisão de literatura. Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE. 10(10). Doi: https://doi.org/10.51891/rease.v10i10.
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.
Perez, L. & Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621.
Roboflow. (2025). Everything you need to build and deploy computer vision applications. Website Roboflow Inc. https://roboflow.com/.
Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta paul. enferm. 20 (2). https://doi.org/10.1590/S0103-21002007000200001,
Rodrigues Santos, J., Drummond Vieira da Silva, F., Trindade Marinho Santana, H. & Santos, S. A. (2021). Tratamento das doenças do trato respiratório: o uso das plantas medicinais. Scientia Generalis. 3(1). https://scientiageneralis.com.br/index.php/SG/article/view/389
Shen, D., Wu, G. & Suzuki, K. (2017). Deep Learning in Medical Image Analysis. Annual Review of Biomedical Engineering. 19, 221–48.
SindInfo. (2023). SindHosp lança o Mapa do Acesso da Saúde de São Paulo. http://sindhosp.org.br/sindhosp-lanca-mapa-acesso-saude-sao-paulo/.
Soares, R. A., Pereira, I. S., Frazão, M. P., Duque, M. G. C., Santos, J. V. F. S., Duque, R. G. C., Pádua, D. M., Martins, J. K. G. R., Peixoto, J. O., Acácio, M. S, Galvão, A. A. C. B. & Araújo, S. L. S. (2023). The use of artificial intelligence in medicine: applications and benefits. Research, Society and Development. 12(4), e5012440856. Doi: https://doi.org/10.33448/rsd-v12i4.40856.
Zhao, Z. et al. (2019). Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems. 30(11), 3212–32.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Clayton Moreira Marques, Cláudio Boghi, Pedro Leal Iglesias

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
