Colored shade nets and foliar ProLyks® application modulate plant growth and secondary metabolism in Mikania laevigata Sch. Bip. ex-Baker

Authors

DOI:

https://doi.org/10.33448/rsd-v14i9.49525

Keywords:

Coumarin biosynthesis, Elicitor effect, Medicinal plants.

Abstract

The efficacy and safety of phytotherapeutic medicines are intrinsically related to the quality of their plant-based raw materials, which is directly influenced by agronomic cultivation practices. The objective of this study was to evaluate the effects of colored shade nets and foliar application of ProLyks® on the growth and secondary metabolism of Mikania laevigata Sch. Bip. ex-Baker. The experiment followed a completely randomized 4 × 5 split-plot design, with three photoselective shade nets (red, blue, and black) compared to full sunlight (control) and five ProLyks® doses (0.00, 0.25, 0.50, 1.00, and 2.00 mL·L⁻¹). Significant interactions between these factors were observed for plant height, number of leaves, leaf dry matter, and coumarin content. The red net promoted the highest biomass production and, when combined with the 1.5 mL·L⁻¹ ProLyks® dose, also maximized coumarin accumulation in leaves, indicating a possible elicitor effect under these conditions. A considerable positive correlation between plant height and coumarin content suggests that taller plants may serve as a practical field indicator of superior pharmaceutical quality. Additionally, an inverse correlation between total chlorophyll and flavonoid content highlights a trade-off between photosynthetic pigment synthesis and secondary metabolism. These findings demonstrate that red shade nets combined with the optimal ProLyks® dosage can enhance both biomass yield and phytochemical production in M. laevigata, while also providing useful indicators for field selection of high-quality materials for the national pharmaceutical industry.

References

Ahmed, H. A., Al-Faraj, A. A., & Abdel-Ghany, A. M. (2016). Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. Scientia Horticulturae, 201, 36–45. https://doi.org/10.1016/j.scienta.2016.01.030

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2014). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

Alves, L., & Deschamps, C. (2019). Radiation levels of UV-A and UV-B on growth parameters and coumarin content in guaco. Ciência Rural, 49(10), e20190042. https://doi.org/10.1590/0103-8478cr20190042

Azevedo, S. G. D., Oliveira, L. P. H., Manzali, S. I., & Car, S. A. (2018). Fitoterapia contemporânea: Tradição e ciência na prática clínica (2nd ed.). Guanabara Koogan.

Belz, R. G., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70(5), 698–707. https://doi.org/10.1002/ps.3726

Bertolucci, S. K. V., Pereira, A. B. D., Pinto, J. E. B. P., Oliveira, A. B., & Braga, F. C. (2013). Seasonal variation on the contents of coumarin and kaurane-type diterpenes in Mikania laevigata and Mikania glomerata leaves under different shade levels. Chemistry & Biodiversity, 10(2), 288–295. https://doi.org/10.1002/cbdv.201200166

Castro, E. M., Pinto, J. E. B. P., Bertolucci, S. K. V., & Malta, M. R. (2006). Coumarin contents in young Mikania glomerata plants (Guaco) under different radiation levels and photoperiod. Acta Farmaceutica Bonaerense, 25(3), 387-392.

Chaimovitsh, D., Abu-Abied, M., Rubin, B., & Sadot, E. (2017). Herbicidal activity of monoterpenes is associated with disruption of microtubule functionality and membrane integrity. Weed Science, 65(1), 19–30. https://doi.org/10.1614/WS-D-16-00044.1

Chen, S. L., Yu, H., Luo, H. M., Wu, Q., Li, C. F., & Steinmetz, A. (2016). Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine, 11(1), 37. https://doi.org/10.1186/s13020-016-0108-7

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

Contin, D. R., Habermann, E., Alves, V. M., & Martinez, C. A. (2021). Morpho-physiological performance of Mikania glomerata Spreng. and Mikania laevigata Sch. Bip ex Baker plants under different light conditions. Hoehnea, 48, e742020. https://doi.org/10.1590/2236-8906-74/2020

Costa, A. G., Chagas, J. H., Pinto, J. E. B. P., & Bertolucci, S. K. V. (2012). Crescimento vegetativo e produção de óleo essencial de hortelã-pimenta cultivada sob malhas. Pesquisa Agropecuária Brasileira, 47(4), 534–540. https://doi.org/10.1590/S0100-204X2012000400009

Costa, L. C. B., Pinto, J. E. B. P., Castro, E. M., Alves, E., Bertolucci, S. K. V., Rosal, L. F., & Costa, L. (2010). Shading affecting growth and leaf structure of Ocimum selloi: Effects of coloured shade netting on the vegetative development and leaf structure of Ocimum selloi. Bragantia, 69(2), 349–359. https://doi.org/10.1590/S0006-87052010000200012

Czelusniak, K. E., Brocco, A., Pereira, D. F., & Freitas, G. B. L. (2012). Pharmacobotany, phytochemistry, and pharmacology of guaco: a review considering Mikania glomerata Sprengel and Mikania laevigata Schultz Bip. ex Baker. Revista Brasileira de Plantas Medicinais, 14, 400–409. https://doi.org/10.1590/S1516-05722012000200022

Davis, C. C., & Choisy, P. (2024). Medicinal plants meet modern biodiversity science. Current Biology, 34(4), R158–R173. https://doi.org/10.1016/j.cub.2023.12.038

de Lazzari Almeida, C., Xavier, R. M., Borghi, A. A., dos Santos, V. F., & Sawaya, A. C. H. F. (2017). Effect of seasonality and growth conditions on the content of coumarin, chlorogenic acid and dicaffeoylquinic acids in Mikania laevigata Schultz and Mikania glomerata Sprengel (Asteraceae) by UHPLC–MS/MS. International Journal of Mass Spectrometry, 418, 162–172. https://doi.org/10.1016/j.ijms.2016.09.016

de Oliveira, R. C., Blank, A. F., de Oliveira, R. C., Luz, J. M. Q., & dos Santos, A. P. (2023). Optimizing in vitro growth of basil using LED lights. Ciência Rural, 53(5). https://doi.org/10.1590/0103-8478cr20220030

De Souza, T., Ferreira, J. V., Damaso, D. C., Vasconcelos, P. S., Lima, A. M., & Perfeito, J. P. S. (2024). Uso de cascas de laranja para extração de óleo essencial e avaliação de suas atividades biológicas. Revista Ifes Ciência, 10(1), 1–23. https://doi.org/10.36524/ric.v10i1.2419

de Sousa, F. A. S., & de Azevedo, C. A. V. (2016). The Assistat software version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, 11(39), 3733-3740. https://doi.org/10.5897/AJAR2016.11522

Díaz-Perez, J. C., & St John, K. (2019). Bell pepper (Capsicum annuum L.) under colored shade nets: Plant growth and physiological responses. HortScience, 54(10), 1795–1801. https://doi.org/10.21273/HORTSCI14233-19

Dubois, P. G., & Brutnell, T. P. (2011). Topology of a maize field: Distinguishing the influence of end-of-day far-red light and shade avoidance syndrome on plant height. Plant Signaling & Behavior, 6(4), 467–470. https://doi.org/10.4161/psb.6.4.14305

Flor, I. C., Rodrigues, A. R., Silva, S. A., Proença, B., & Maia, V. C. (2022). Insect galls on Asteraceae in Brazil: Richness, geographic distribution, associated fauna, endemism and economic importance. Biota Neotropica, 22, e20211234. https://doi.org/10.1590/1676-0611-bn-2021-1234

Freire, M. M., Herc, P., Rodrigues, V., Duarte, S. N., Beserra, G., & Marques, A. (2024). Influence of colored shade nets and salinity on the development of roselle plants. Agronomy, 14(10), 2252. https://doi.org/10.3390/agronomy14102252

Fu, B., Ji, X., Zhao, M., He, F., Wang, X., Wang, Y., Liu, P., & Niu, L. (2016). The influence of light quality on the accumulation of flavonoids in tobacco (Nicotiana tabacum L.) leaves. Journal of Photochemistry and Photobiology B: Biology, 162, 544–549. https://doi.org/10.1016/j.jphotobiol.2016.07.016

Garcia, T. P., Gorski, D., Cobre, A. F., Lazo, R. E. L., Bertol, G., Ferreira, L. M., & Pontarolo, R. (2025). Biological activities of Mikania glomerata and Mikania laevigata: a scoping review and evidence gap mapping. Pharmaceuticals, 18(4), 552. https://doi.org/10.3390/ph18040552

Gasparetto, J. C., Campos, F. R., Budel, J. M., & Pontarolo, R. (2010). Mikania glomerata Spreng. and M. laevigata Sch. Bip. ex Baker (Asteraceae): Agronomic, genetic, morpho-anatomical, chemical, pharmacological, toxicological studies and their use in Brazilian phytotherapy programs. Revista Brasileira de Farmacognosia, 20(4), 627–640. https://doi.org/10.1590/S0102-695X2010000400025

Gettys, L. A., Thayer, K. L., & Sigmon, J. W. (2021). Evaluating the effects of acetic acid and d-limonene on four aquatic plants. HortTechnology, 31(2), 225–233. https://doi.org/10.21273/HORTTECH04769-20

Han, S., Liu, Y., Bao, A., Jiao, T., Zeng, H., Yue, W., et al. (2024). A characterization of the functions of OsCSN1 in the control of sheath elongation and height in rice plants under red light. Agronomy, 14(3), 572. https://doi.org/10.3390/agronomy14030572

Han, Y., Sun, Z., & Chen, W. (2020). Antimicrobial susceptibility and antibacterial mechanism of limonene against Listeria monocytogenes. Molecules, 25(1), 33. https://doi.org/10.3390/molecules25010033

Harish, B. S., Umesha, K., Venugopalan, R., & Prasad, B. N. M. (2022). Photo-selective nets influence physiology, growth, yield and quality of turmeric (Curcuma longa L.). Industrial Crops and Products, 186, 115202. https://doi.org/10.1016/j.indcrop.2022.115202

Hasan, S. A., Irfan, M., Masrahi, Y. S., Khalaf, M. A., & Hayat, S. (2016). Growth, photosynthesis, and antioxidant responses of Vigna unguiculata L. treated with hydrogen peroxide. Cogent Food & Agriculture, 2(1), 1155331. https://doi.org/10.1080/23311932.2016.1155331

Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334. https://doi.org/10.1139/b79-163

Honorato, A. C., Nohara, G. A., Assis, R. M. A., Maciel, J. F. A., Carvalho, A. A., Pinto, J. E. B. P., & Bertolucci, S. K. V. (2023). Colored shade nets and different harvest times alter the growth, antioxidant status, and quantitative attributes of glandular trichomes and essential oil of Thymus vulgaris L. Journal of Applied Research on Medicinal and Aromatic Plants, 35, 100474. https://doi.org/10.1016/j.jarmap.2023.100474

Ilić, Z. S., Milenković, L., Šunić, L., Barać, S., Mastilović, J., Kevrešan, Ž., & Fallik, E. (2017). Effect of shading by coloured nets on yield and fruit quality of sweet pepper. Zemdirbyste-Agriculture, 104(1), 53–62. https://doi.org/10.13080/z-a.2017.104.008

Jiménez-Viveros, Y., Núñez-Palenius, H. G., Fierros-Romero, G., & Valiente-Banuet, J. I. (2023). Modification of light characteristics affect the phytochemical profile of peppers. Horticulturae, 9(1), 72. https://doi.org/10.3390/horticulturae9010072

Kabir, M. Y., Nambeesan, S. U., & Díaz-Pérez, J. C. (2024). Shade nets improve vegetable performance. Scientia Horticulturae, 334, 113326. https://doi.org/10.1016/j.scienta.2024.113326

Lees, D. H., & Francis, F. J. (1972). Standardization of pigment analysis in cranberries. HortScience, 7(1), 83-84. https://doi.org/10.21273/HORTSCI.7.1.83

Li, Z., & Ahammed, G. J. (2023). Plant stress response and adaptation via anthocyanins: A review. Plant Stress, 10, 100230. https://doi.org/10.1016/j.stress.2023.100230

Lima, R. H. S., Mazzafera, P., Rachwal, M. F. G., & Ballarin, A. W. (2019). Growth, biomass and secondary metabolite production of Achyrocline satureioides under colored shading nets. Industrial Crops and Products, 141, 111734. https://doi.org/10.1016/j.indcrop.2019.111734

Lin, H., Li, Z., Sun, Y., Zhang, Y., Wang, S., Zhang, Q., et al. (2024). D-limonene: Promising and sustainable natural bioactive compound. Applied Sciences, 14(11), 4605. https://doi.org/10.3390/app14114605

Medeiros, J., & Kanis, L. A. (2010). Avaliação do efeito de polietilenoglicóis no perfil de extratos de Mikania glomerata Spreng. e Passiflora edulis Sims. Revista Brasileira de Farmacognosia, 20, 796-802. https://doi.org/10.1590/S0102-695X2010005000001

Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69–71.

Ninkuu, V., Zhang, L., Yan, J., Fu, Z., Yang, T., & Zeng, H. (2021). Biochemistry of terpenes and recent advances in plant protection. International Journal of Molecular Sciences, 22(11), 5710. https://doi.org/10.3390/ijms22115710

Orsi, B., Demétrio, C. A., Jacob, J. F. O., & Rodrigues, P. H. V. (2022). Effect of terpene treatment on tomato fruit. Bragantia, 81, e0322. https://doi.org/10.1590/1678-4499.20210134

Ortiz, A., & Sansinenea, E. (2023). Phenylpropanoid derivatives and their role in plants’ health and as antimicrobials. Current Microbiology, 80, 380. https://doi.org/10.1007/s00284-023-03502-x

Pannacci, E., Baratta, S., Falcinelli, B., Farneselli, M., & Tei, F. (2022). Mugwort (Artemisia vulgaris L.) aqueous extract: Hormesis and biostimulant activity for seed germination and seedling growth in vegetable crops. Agriculture, 12(9), 1329. https://doi.org/10.3390/agriculture12091329

Pannacci, E., Onofri, A., & Covarelli, G. (2006). Biological activity, availability and duration of phytotoxicity for imazamox in four different soils of central Italy. Weed Research, 46(3), 243–250. https://doi.org/10.1111/j.1365-3180.2006.00503.x

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria: Editora da UFSM.

Pereira Feitosa, L. G., Monge, M., Lopes, N. P., & Rodrigues de Oliveira, D. C. (2021). Distribution of flavonoids and other phenolics in Mikania species (Compositae) of Brazil. Biochemical Systematics and Ecology, 97, 104273. https://doi.org/10.1016/j.bse.2021.104273

Punja, Z. K., Sutton, D. B., & Kim, T. (2023). Glandular trichome development, morphology, and maturation are influenced by plant age and genotype in high THC-containing Cannabis sativa L. inflorescences. Journal of Cannabis Research, 5(1), 12. https://doi.org/10.1186/s42238-023-00190-w

Ribeiro, A. S., Ribeiro, M. S., Bertolucci, S. K. V., Bittencourt, W. J. M., de Carvalho, A. A., Tostes, W. N., Alves, E., & Pinto, J. E. B. P. (2018). Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin. Anais da Academia Brasileira de Ciências, 90, 1823–1835. https://doi.org/10.1590/0001-3765201820170299

Ribeiro, F. N. S., de Assis, R. M. A., Leite, J. J. F., Miranda, T. F., Alves, E., Bertolucci, S. K. V., & Pinto, J. E. B. P. (2024). The cultivation of Lippia dulcis under ChromatiNet induces changes in vegetative growth, anatomy and essential oil chemical composition. South African Journal of Botany, 174, 393–404. https://doi.org/10.1016/j.sajb.2024.09.003

Rosini, B., Bulla, A. M., Polonio, J. C., Polli, A. D., da Silva, A. A., Schoffen, R. P., de Oliveira-Junior, V. A., Santos, S. S., Golias, H. C., Azevedo, J. L., & Pamphile, J. A. (2025). Isolation, identification, and bioprospection of endophytic bacteria from medicinal plant Mikania glomerata (Spreng.) and the consortium of Pseudomonas as plant growth promoters. Biocatalysis and Agricultural Biotechnology, 64, 103530. https://doi.org/10.1016/j.bcab.2025.103530

Santos, L. D. G., Lima, C. S. M., Bonome, L. T. S., & Rosa, G. G. (2023). Colors of shadowing meshes on phenology, biometrics and physicochemical characteristics of Physalis peruviana L. in organic production system. Revista de Ciências Agroveterinárias, 22, 285–294. https://doi.org/10.5965/223811712222023285

Sbaghi, M., & el Aalaoui, M. (2025). Evaluating natural product-based herbicides for effective control of invasive water lettuce (Pistia stratiotes L.). Advances in Weed Science, 43, 00001. https://doi.org/10.51694/AdvWeedSci/2025;43:00001

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452. https://doi.org/10.3390/molecules24132452

Siegelman, H. W., & Hendricks, S. B. (1958). Photocontrol of anthocyanin synthesis in apple skin. Plant Physiology, 33(3), 185-190. https://doi.org/10.1104/pp.33.3.185

Sieniawska, E., Swatko-Ossor, M., Sawicki, R., & Ginalska, G. (2015). Morphological changes in the overall Mycobacterium tuberculosis H37Ra cell shape and cytoplasm homogeneity due to Mutellina purpurea L. essential oil and its main constituents. Medical Principles and Practice, 24(6), 527–532. https://doi.org/10.1159/000438479

Singh, P. A., Bajwa, N., Chinnam, S., Chandan, A., & Baldi, A. (2022). An overview of some important deliberations to promote medicinal plants cultivation. Journal of Applied Research on Medicinal and Aromatic Plants, 29, 100400. https://doi.org/10.1016/j.jarmap.2022.100400

Song, S., He, A., Zhao, T., Yin, Q., Mu, Y., Wang, Y., Liu, H., Nie, L., & Peng, S. (2022). Effects of shading at different growth stages with various shading intensities on the grain yield and anthocyanin content of colored rice (Oryza sativa L.). Field Crops Research, 283, 108555. https://doi.org/10.1016/j.fcr.2022.108555

Souza, G. S., Castro, E. M., Soares, A. M., & Pinto, J. E. B. P. (2010). Biometric and physiological aspects of young plants of Mikania glomerata Sprengel and Mikania laevigata Schultz Bip. ex Baker under colored nets. Revista Brasileira de Biociências, 8(4), 330–335.

Souza, G. S., Castro, E. M., Soares, A. M., Pinto, J. E. B. P., Resende, M. G., & Bertolucci, S. K. V. (2011). Crescimento, teor de óleo essencial e conteúdo de cumarina de plantas jovens de guaco (Mikania glomerata Sprengel) cultivadas sob malhas coloridas. Biotemas, 24(3), 1–11. https://doi.org/10.5007/2175-7925.2011v24n3p1

Souza, J. O., Oliveira, E. F., Santos, M. E. S., & Kirsten, C. N. (2022). Mikania glomerata Spreng (Asteraceae): its therapeutic use and potential in the COVID-19 pandemic. Revista Fitos, 16, 270–276. https://doi.org/10.32712/2446-4775.2022.1292

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development (6th ed.). Sinauer Associates, Inc.

Thakur, M., & Kumar, R. (2021). Microclimatic buffering on medicinal and aromatic plants: A review. Industrial Crops and Products, 160, 113144. https://doi.org/10.1016/j.indcrop.2020.113144

Thakur, M., Bhattacharya, S., Khosla, P. K., & Puri, S. (2019). Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants, 12, 1–12. https://doi.org/10.1016/j.jarmap.2018.11.004

Thawonkit, T., Insalud, N., Dangtungee, R., & Bhuyar, P. (2025). Integrating sustainable cultivation practices and advanced extraction methods for improved cannabis yield and cannabinoid production. International Journal of Plant Biology, 16(2), 38. https://doi.org/10.3390/ijpb16020038

Tittonell, P., & Giller, K. E. (2013). When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research, 143, 76–90. https://doi.org/10.1016/j.fcr.2012.10.007

Vargas-Hernandez, M., Macias-Bobadilla, I., Guevara-Gonzalez, R. G., Romero-Gomez, S. J., Rico-Garcia, E., Ocampo-Velazquez, R. V., et al. (2017). Plant hormesis management with biostimulants of biotic origin in agriculture. Frontiers in Plant Science, 8, 1762. https://doi.org/10.3389/fpls.2017.01762

Vuković, M., Jurić, S., Maslov Bandić, L., Levaj, B., Fu, D. Q., & Jemrić, T. (2022). Sustainable food production: Innovative netting concepts and their mode of action on fruit crops. Sustainability, 14(15), 9264. https://doi.org/10.3390/su14159264

Vieira, S. (2021). Introdução à bioestatística. Editora GEN/Guanabara Koogan.

Wang, W., Xu, J., Fang, H., Li, Z., & Li, M. (2020). Advances and challenges in medicinal plant breeding. Plant Science, 298, 110573. https://doi.org/10.1016/j.plantsci.2020.110573

Wang, Y., Guan, T., Yue, X., Yang, J., Zhao, X., Chang, A., Yang, C., Fan, Z., Liu, K., & Li, Y. (2025). The biosynthetic pathway of coumarin and its genetic regulation in response to biotic and abiotic stresses. Frontiers in Plant Science, 16, 1599591. https://doi.org/10.3389/fpls.2025.1599591

Wang, Y. S., Gao, L. P., Shan, Y., Liu, Y. J., Tian, Y. W., & Xia, T. (2012). Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 141, 7–16. https://doi.org/10.1016/j.scienta.2012.04.013

Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2

Wolske, E., Chatham, L., Juvik, J., & Branham, B. (2021). Berry quality and anthocyanin content of ‘Consort’ black currants grown under artificial shade. Plants, 10(4), 766. https://doi.org/10.3390/plants10040766

Yatsuda, R., Rosalen, P. L., Cury, J. A., Murata, R. M., Rehder, V. L. G., Melo, L. V., & Koo, H. (2005). Effects of Mikania genus plants on growth and cell adherence of mutans streptococci. Journal of Ethnopharmacology, 97(2), 183–189. https://doi.org/10.1016/j.jep.2004.09.042

Ye, J. H., Lv, Y. Q., Liu, S. R., Jin, J., Wang, Y. F., Wei, C. L., & Zhao, S. Q. (2021). Effects of light intensity and spectral composition on the transcriptome profiles of leaves in shade grown tea plants (Camellia sinensis L.) and regulatory network of flavonoid biosynthesis. Molecules, 26(19), 5836. https://doi.org/10.3390/molecules26195836

Zare, S., Naderi, R., & Amini Dehaghi, M. (2019). Effect of colored shade nets on growth, photosynthesis and yield of ornamental plants. Acta Horticulturae, 1266, 341–348. https://doi.org/10.17660/ActaHortic.2019.1266.47

Zhang, Q., Bi, G., Li, T., Wang, Q., Xing, Z., LeCompte, J., & Harkess, R. L. (2022). Color shade nets affect plant growth and seasonal leaf quality of Camellia sinensis grown in Mississippi, the United States. Frontiers in Nutrition, 9, 786421. https://doi.org/10.3389/fnut.2022.786421

Zhou, T., Chang, F., Li, X., Yang, W., Huang, X., Yan, J., Wu, Q., Wen, F., Pei, J., Ma, Y., & Xu, B. (2024). Role of auxin and gibberellin under low light in enhancing saffron corm starch degradation during sprouting. International Journal of Biological Macromolecules, 279, 135234. https://doi.org/10.1016/j.ijbiomac.2024.135234

Zoratti, L., Jaakola, L., Häggman, H., & Giongo, L. (2015). Modification of sunlight radiation through colored photo-selective nets affects anthocyanin profile in Vaccinium spp. berries. PLoS ONE, 10(8), e0135935. https://doi.org/10.1371/journal.pone.0135935

Zou, J., Gong, Z., Liu, Z., Ren, J., & Feng, H. (2023). Investigation of the key genes associated with anthocyanin accumulation during inner leaf reddening in ornamental kale (Brassica oleracea L. var. acephala). International Journal of Mlecular Sciences, 24(3), 2837. https://doi.org/10.3390/ijms24032837

Downloads

Published

2025-09-15

Issue

Section

Agrarian and Biological Sciences

How to Cite

Colored shade nets and foliar ProLyks® application modulate plant growth and secondary metabolism in Mikania laevigata Sch. Bip. ex-Baker. Research, Society and Development, [S. l.], v. 14, n. 9, p. e4514949425, 2025. DOI: 10.33448/rsd-v14i9.49525. Disponível em: https://rsdjournal.org/rsd/article/view/49525. Acesso em: 5 dec. 2025.