In silico screening of bioactivity against COVID-19 of compounds found in the essencial oil of the species Rosmarinus officinalis L.
DOI:
https://doi.org/10.33448/rsd-v14i11.49780Keywords:
COVID-19, Biologically active compounds, Volatile oils.Abstract
This study aimed to analyze the potential bioactivity of compounds present in the essential oil of Rosmarinus officinalis L. (rosemary) against COVID-19 using computational methods. The methodology involved a bibliographic survey in databases such as PUBMED and Sciencedirect, identifying 27 compounds in the essential oil, and performing in silico predictions of their biological activities through Way2drug and Swiss Target tools. Molecular modeling was conducted to assess the interaction of these molecules with the main protease (Mpro) of SARS-CoV-2, an enzyme critical for viral replication. Results indicated that compounds like apigenin, betulinic acid, luteolin, and carnosol showed high binding affinity and inhibitory potential on Mpro, alongside anti-inflammatory and antioxidant properties. These findings suggest that rosemary essential oil can modulate immune response and directly inhibit viral replication. The study concludes by emphasizing the need for further clinical studies, as well as in vitro and in vivo validations, to confirm the compounds’ efficacy and safety. Therefore, rosemary essential oil emerges as a promising natural source for new therapeutic alternatives against COVID-19.
References
Amaral, S. M., Silva, R. C., Souza, M. F., & Oliveira, J. P. (2021). Alecrim (Rosmarinus officinalis): principais características. Revista de Casos e Consultoria, 12(1), e24651.
Barreiro, E. J., Rodrigues, C. R., Albuquerque, M. G., Sant'Anna, C. M. R. D., & Alencastro, R. B. D. (1997). Modelagem molecular: uma ferramenta para o planejamento racional de fármacos em química medicinal. Química nova, 20, 300–310.
Bouafia, M., Amamou, F., Gherib, M., Benaissa, M., Azzi, R., & Nemmiche, S. (2021). Ethnobotanical and ethnomedicinal analysis of wild medicinal plants traditionally used in Naâma, southwest Algeria. Vegetos, 34(3), 654–662. https://doi.org/10.1007/s42535-021-00229-7
Chernyak, B. V., Popova, E. N., Prikhodko, A. S., Grebenchikov, O. A., Zinovkina, L. A., & Zinovkin, R. A. (2020). COVID-19 and oxidative stress. Biochemistry (Moscow), 85, 1543–1553. https://doi.org/10.1134/S0006297920120068
Junqueira, C., Crespo, Â., Ranjbar, S., Lewandrowski, M., Ingber, J., & Clark, S. (2022). FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature, 606(7914), 576–584. https://doi.org/10.1038/s41586-022-04702-4
Koutsaliaris, I. K., Tsigalou, C., Chatzidimitriou, E., & Goulas, A. (2022). Antioxidant and anti-inflammatory effects of Rosmarinus officinalis and Melissa officinalis ethanolic extracts. Atherosclerosis, 355, 48. https://doi.org/10.1016/j.atherosclerosis.2022.06.048
Liu, T., Lin, Y., Wen, X., Jorissen, R. N., & Gilson, M. K. (2007). BindingDB: A web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Research, 35(Database issue), D198–D201. https://doi.org/10.1093/nar/gkl999
O'Boyle, N. M. (2012). Rumo a uma representação universal de SMILES – Um método padrão para gerar SMILES canônicos com base no InChI. Journal of Cheminformatics, 4(1), 22. https://doi.org/10.1186/1758-2946-4-22
Ordon, M., Zdanowicz, M., Nawrotek, P., Stachurska, X., & Mizielińska, M. (2021). Polyethylene films containing plant extracts in the polymer matrix as antibacterial and antiviral materials. International Journal of Molecular Sciences, 22(24), 13438. https://doi.org/10.3390/ijms222413438
Patel, U., Desai, K., Dabhi, R. C., Maru, J. J., & Shrivastav, P. S. (2023). Bioprospecting phytochemicals of Rosmarinus officinalis L. for targeting SARS-CoV-2 main protease (Mpro): A computational study. Journal of Molecular Modeling, 29(5), 161. https://doi.org/10.1007/s00894-023-05569-6
Porte, A., & Godoy, R. L. O. (2001). Alecrim (Rosmarinus officinalis L.): propriedades antimicrobiana e química do óleo essencial. Boletim do Centro de Pesquisa de Processamento de Alimentos, 19(2).
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.
Sasaki, K., Ferdousi, F., Fukumitsu, S., Kuwata, H., & Isoda, H. (2021). Antidepressant- and anxiolytic-like activities of Rosmarinus officinalis extract in rodent models: Involvement of oxytocinergic system. Biomedicine & Pharmacotherapy, 144, 112291. https://doi.org/10.1016/j.biopha.2021.112291
Satoh, T., Trudler, D., Oh, C. K., & Lipton, S. A. (2022). Potential therapeutic use of the rosemary diterpene carnosic acid for Alzheimer’s disease, Parkinson’s disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome. Antioxidants, 11(1), 124. https://doi.org/10.3390/antiox11010124
Silva, A. M. de O. (2012). Efeito dos compostos fenólicos do alecrim (Rosmarinus officinalis L.) na inflamação aguda e sobre os marcadores de estresse oxidativo de ratos diabéticos (Tese de doutorado). Universidade de São Paulo.
Silva, M. C. R., & Monteiro, D. V. D. S. (2021). Atividades antimicrobianas e antifúngicas do óleo essencial de alecrim (Rosmarinus officinalis L.). Revista Multidisciplinar em Saúde, 2(2), 53.
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 104, 333-9. Doi: https://doi.org/10.1016/j.jbusres.2019.07.039.
Villegas-Sánchez, E., Macías-Alonso, M., Osegueda-Robles, S., Herrera-Isidrón, L., Nuñez-Palenius, H., & González-Marrero, J. (2021). In vitro culture of Rosmarinus officinalis L. in a temporary immersion system: Influence of two phytohormones on plant growth and carnosol production. Pharmaceuticals, 14(8), 747. https://doi.org/10.3390/ph14080747
Wani, A. R., Yadav, K., Khursheed, A., & Rather, M. A. (2021). An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microbial Pathogenesis, 152, 104620. https://doi.org/10.1016/j.micpath.2020.104620
Waller, S. B., Madrid, I. M., Cleff, M. B., & Meireles, M. C. A. (2021). Can the essential oil of rosemary (Rosmarinus officinalis Linn.) protect rats infected with itraconazole-resistant Sporothrix brasiliensis from fungal spread? Journal of Medical Mycology, 31(4), 101199. https://doi.org/10.1016/j.mycmed.2021.101199
Zrig, A. (2022). The effect of phytocompounds of medicinal plants on coronavirus (2019-nCoV) infection. Pharmaceutical Chemistry Journal, 1–5. https://doi.org/10.1007/s11094-021-02540-8
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ronair Rosa Dias Filho, Braz Vilarinho da Silva Filho, Leonardo Luíz Borges

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
