Bacteriophages isolate of stream water in Brazil lyses the superbugs Klebsiella spp

Authors

DOI:

https://doi.org/10.33448/rsd-v14i10.49849

Keywords:

Klebsiella pneumoniae, Food microbiology, Phage stability, Phage therapy, Water quality.

Abstract

This study aimed to evaluate bacteriophages isolated from a stream in Brazil that lyse Klebsiella spp. superbugs. Klebsiella pneumoniae is a Gram-negative bacterium associated with high infection rates worldwide and is currently listed by the World Health Organization (WHO) as a critical priority pathogen for the development of new antimicrobials. The indiscriminate use of antibiotics has accelerated the emergence of multidrug-resistant strains, underscoring the urgent need for alternative therapeutic strategies such as phage therapy. In this study, two bacteriophages (vB_MC_KP1 and vB_MC_KP2) were isolated from stream water in Minas Gerais, Brazil, a site receiving domestic sewage and used for irrigation and other human activities. Both phages specifically infected Klebsiella spp. and were characterized by in vitro assays assessing host range and physicochemical stability. They demonstrated high specificity, lytic activity against multiple Klebsiella species, and remarkable stability under a wide range of temperatures and pH values. These findings indicate that the isolated phages are environmentally persistent and hold potential for both therapeutic applications against multidrug-resistant K. pneumoniae and future use in environmental or food safety interventions. Further molecular characterization and in vivo studies are warranted to validate their application.    

References

Al Sharif, P. (2021) Mundo tem 600 milhões de casos de doenças por alimentos contaminados todos os anos, ONU News. Available at: https://news.un.org/pt/story/2021/06/1752552 (Accessed: March 5, 2024).

Alves, M. K. (2021) Isolamento e caracterização genômica de bacteriófago para biocontrole de Pseudomonas cichorri. Tese (Doutorado em Biotecnologia)-Universidade de Caxias do Sul, Caxias do Sul-Rio Grande do Sul.

Anand, T., et al. (2020). Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model, Journal of global antimicrobial resistance, 21, pp. 34–41. doi: 10.1016/j.jgar.2019.09.018; PMID: 31604128.

Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62(3), pp.293-300. doi: 10.1128/jb.62.3.293-300.1951; PMID: 14888646; PMCID: PMC386127.

Caflisch, K. M., Suh, G. A. & Patel, R. (2019) . Biological challenges of phage therapy and proposed solutions: a literature review, Expert review of anti-infective therapy, 17(12), pp. 1011–1041. doi: 10.1080/14787210.2019.1694905; PMID: 31735090; PMCID: PMC6919273.

Chang, R. Y. K., et al. (2018) “Phage therapy for respiratory infections,” Advanced drug delivery reviews, 133, pp. 76-86. doi: 10.1016/j.addr.2018.08.001.

Costa, A. L. P. & Silva Junior, A. C. S. (2017). Resistência bacteriana aos antibióticos e Saúde Pública: uma breve revisão de literatura, Estação Científica (UNIFAP), 7(2), p. 45-57. doi: 10.18468/estcien.2017v7n2.

Crippa, C., Pasquali, F., Rodrigues, C. et al. (2023). Genomic features of Klebsiella isolate from artisanal ready-to-eat food production facilities. Scientific Reports 13, 10957. https://doi.org/10.1038/s41598-023-37821-7

Cully, M. (2019). Antibiotics alter the gut microbiome and host healt. Nature portifolio, 17 June 2019.

Drulis-Kawa, Z. et al. (2012). Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications, Current protein & peptide science, 13(8), pp. 699–722. doi: 10.2174/138920312804871193.

Eskenazi, A. et al. (2022) “Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae,” Nature communications, 13(1). doi: 10.1038/s41467-021-27656-z; PMID: 35042848; PMCID: PMC8766457

Herridge, W. P. et al. (2020). Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses, Journal of medical microbiology, 69(2), pp. 176–194. doi: 10.1099/jmm.0.001141.

Jurczak-Kurek, A. et al. (2016). Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage,” Scientific reports, 6(1). doi: 10.1038/srep34338.

Kęsik-Szeloch, A. et al. (2013). Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae, Virology journal, 10(1). doi: 10.1186/1743-422x-10-100.

Li Y. et al. (2020). Prevalence and antimicrobial susceptibility of Salmonella in the commercial eggs in China, International journal of food microbiology, 325 (108623), p.108623 doi: 10.1016/j.ijfoodmicro.2020.108623; PMID: 32339770.

Liu, Y., Wang, J., Zhao, R. et al. (2024). Isolamento bacteriano e análise genômica de um novo fago de Klebsiella quasipneumoniae na região cárstica do sudoeste da China. Virol J 21, 56 (2024). https://doi.org/10.1186/s12985-024-02321-1

Loganathan, A. et al. (2021). Phage therapy as a revolutionary medicine against Gram-positive bacterial infections, Beni-Suef University Journal of Basic and Applied Sciences, 10(1). doi: 10.1186/s43088-021-00141-8.

Martin, R. M. & Bachman, M. A. (2018). Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae, Frontiers in cellular and infection microbiology, 8. doi: 10.3389/fcimb.2018.00004.

Mercanti, D. J., Ackermann, H.-W. & Quiberoni, A. (2015). Characterization of two temperate Lactobacillus paracasei bacteriophages: Morphology, kinetics and adsorption,” Intervirology, 58(1), pp. 49–56. doi: 10.1159/000369207; PMID: 25591620.

Ni, P. et al. (2021). Characterization of a Lytic Bacteriophage against Pseudomonas syringae pv. actinidiae and Its Endolysin,” Viruses, 13(4), p. 631. doi: 10.3390/v13040631.

Obradović, M. et al. (2023). Isolation, characterization, genome analysis and host resistance development of two novel Lastavirus phages active against pandrug-resistant Klebsiella pneumoniae,” Viruses, 15(3), p. 628. doi: 10.3390/v15030628.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria: Editora da UFSM.

Perera M. N, Abuladze T, Li M, Woolston J, & Sulakvelidze (2015). A. Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol. 2015 Dec;52:42-8. doi: 10.1016/j.fm.2015.06.006. Epub 2015 Jun 23. PMID: 26338115.

Rasheed, J. K. et al. (2000). Characterization of the extended-spectrum β-lactamase reference strain, Klebsiella pneumoniae K6 (ATCC 700603), which produces the novel enzyme SHV-18,” Antimicrobial agents and chemotherapy, 44(9), pp. 2382–2388. doi: 10.1128/aac.44.9.2382-2388.2000

Reina, J. & Reina, N. (2018). Phage therapy, an alternative to antibiotic therapy?” Revista espanola de quimioterapia: publicacion oficial de la Sociedad Espanola de Quimioterapia, 31(2), pp. 101–104. PMID: 29451376; PMCID: PMC6159377.

Rocha, L. & Andrade, H. (2022). Infecções por superbactérias levaram à morte de 1,2 milhão de pessoas em 2019, CNN Brasil. Available at: https://www.cnnbrasil.com.br/saude/infeccoes-por-superbacterias-levaram-a-morte-de-12-milhao-de-pessoas-em-2019/ (Accessed: March 5, 2024).

Rohnelt, N. M. S. (2020). Isolamento de bacteriófagos líticos ambientais e sua atividade contra bactérias multirresistentes de importância clínica. Tese (Mestrado em Virologia) -Universidade Feevale, Novo Hamburgo-Rio Grande do Sul.

Souza, M. A. et al. (2019). Métodos Alternativos De Controle Microbiano. PERSPECTIVA, Erechim. v. 43, n.163.

Summers, W. C. (2016). Félix Hubert d’Herelle (1873–1949): History of a scientific mind,” Bacteriophage, 6(4), p. e1270090. doi: 10.1080/21597081.2016.1270090.

Rodrigues, M. F. dos R., Silvestre, B. R. L., Pereira, L. de P., Santos, E. G. C. dos, Barros, C. F. de A., Games, P. D., … Casteluber, M. C. da F. (2025). Microbiological quality of water from the Corredor Stream in Mário Campos, Minas Gerais, in the metropolitan region of Belo Horizonte. Uningá Review, 40, eURJ4510. https://doi.org/10.46311/2178-2571.40.eURJ4510

Rossi, L. P. R., & Almeida, R. C. C. (2010). Bacteriófagos para controle de bactérias patogênicas em alimentos, Rev Inst Adolfo Lutz. São Paulo 69(2):151-6 Available at: https://periodicos.saude.sp.gov.br/RIAL/article/view/32649/31480

Tan, D. et al. (2019). Characterization of Klebsiella pneumoniae ST11 isolates and their interactions with lytic phages,” Viruses, 11(11), p. 1080. doi: 10.3390/v11111080; PMID: 31752386; PMCID: PMC6893751.

Tey, B. T. et al. (2009). Production of fusion m13 phage bearing the di-sulphide constrained peptide sequence (CWSFFSNI-C) that interacts with hepatitis B core antigen,” African Journal of Biotechnology, 8(2), 268-273.

Ullah, A. et al. (2022). Characterization of a Coliphage AS1 isolated from sewage effluent in Pakistan,” Brazilian Journal of Biology, 82. doi: 10.1590/1519-6984.240943.

Vieira, S. (2021). Introdução à bioestatística. Editora GEN/Guanabara Koogan.

Wee S K, & Yap E P H. (2022). Draft enome Sequence of Multidrug Resistant Klebsiella pneumoniae Strain C43 Isolated from Environmental Water Sample. Microbiol Resour Announc. 2022 Sep 15;11(9):e0025222. doi: 10.1128/mra.00252-22. Epub 2022 Aug 22. PMID: 35993705; PMCID: PMC9476979.

Zurabov, F. & Zhilenkov, E. (2021) “Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation,” Virology journal, 18(1). doi: 10.1186/s12985-020-01485-w; PMID: 33407669; PMCID: PMC7789013.

Downloads

Published

2025-10-25

Issue

Section

Agrarian and Biological Sciences

How to Cite

Bacteriophages isolate of stream water in Brazil lyses the superbugs Klebsiella spp. Research, Society and Development, [S. l.], v. 14, n. 10, p. e151141049849, 2025. DOI: 10.33448/rsd-v14i10.49849. Disponível em: https://rsdjournal.org/rsd/article/view/49849. Acesso em: 6 dec. 2025.