Síntesis y caracterización del líquido iónico 1-metil-3-(2,6-(S)-dimetiloct-2-ene)-imidazol tetrafluoroborato

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.18988

Palabras clave:

Líquido iónico, Tetrafluoroborato, 1-Metilimidazol, Rendimiento de la reacción, Paraguay., Electrólisis.

Resumen

Los líquidos iónicos (IL) son buenos conductores eléctricos y compuestos líquidos orgánicos a temperatura ambiente, con aplicabilidad potencial en la electrólisis del agua para la generación de H2. El propósito de este trabajo es describir la síntesis, caracterización y estudio de la viabilidad del líquido iónico 1-metil-3-(2,6-(S)-dimetiloct-2-eno)-imidazolio tetrafluoroborato (MDI-BF4) como electrolito para producir hidrógeno mediante de la electrólisis del agua. El MDI-BF4 sintetizado se caracterizó por análisis termogravimétrico (TGA) y calorimetría diferencial de barrido (DSC), espectroscopia de infrarrojo medio con transformada de Fourier por método de reflectancia total atenuada (FTIR-ATR), espectroscopia de resonancia magnética nuclear de hidrógeno (RMN 1H) y voltamperometría cíclica (CV). El rendimiento de la síntesis se calculados por TGA y DSC. De los resultados: La espectroscopía infrarroja identificó los grupos funcionales del compuesto y el enlace B-F a 1053 cm-1. La RMN 1H analizada y comparada con los datos de la literatura confirma la estructura de MDI-BF4. El rendimiento de la síntesis de MDI-BF4 que fue del 88,84%. La densidad de corriente alcanzada por MDI-BF4 en el voltamograma muestra que el IL puede conducir corriente eléctrica independientemente de la concentración de agua, lo que indica que MDI-BF4 es un electrolito potencial para la producción de hidrógeno a partir de la electrólisis del agua.

Biografía del autor/a

  • Ângelo Anderson Silva de Oliveira, Federal University of Rio Grande do Norte

    Petroleum Science and Engineering Postgraduate Program, Federal Universityof Rio Grande do Norte, Brazil

  • Dulce Maria de Araújo Melo, Federal University of Rio Grande do Norte

    Materials Science and Engineering Post-graduate Program, Federal University of Rio
    Grande do Norte, Brazil

    Chemisty Post-graduate Program, Federal University of Rio Grande do Norte, Brazil

  • Heloísa Pimenta de Macedo, Federal University of Rio Grande do Norte

    Materials Science and Engineering Post-graduate Program, Federal University of Rio Grande do Norte, Brazil

  • Rodolfo Luis Bezerra de Araújo Medeiros, Federal University of Rio Grande do Norte

    Materials Science and Engineering Post-graduate Program, Federal University of Rio Grande do Norte, Brazil

     

  • Ranayanne Suylane Pereira Campos, Federal University of Rio Grande do Norte

    Chemisty Post-graduate Program, Federal Universityof Rio Grande do Norte, Natal, Brazil

  • Pedro Paulo Linhares Ferreira, Federal University of Rio Grande do Norte

    Materials Science and Engineering Post-graduate Program, Federal University of Rio Grande do Norte, Brazil

  • Tomaz Rodrigues de Araújo, Federal University of Rio Grande do Norte

    Materials Science and Engineering Post-graduate Program, Federal University of Rio Grande do Norte, Brazil

Referencias

Babucci, M., & Uzun, A. (2016). Effects of interionic interactions in 1,3-dialkylimidazolium ionic liquids on the electronic structure of metal sites in solid catalysts with ionic liquid layer (SCILL). Journal of Molecular Liquids, 216, 293–297. https://doi.org/10.1016/j.molliq.2015.12.074

Baek, C. S., Lee, Y. J., Lee, S. J., Lee, S. G., Kim, H. C., & Jeong, S. W. (2017). C2-Functionalized 1,3-dialkylimidazolium ionic liquids for efficient cellulose dissolution. Journal of Molecular Liquids, 234, 111–116. https://doi.org/10.1016/j.molliq.2017.03.086

Díaz-Rodríguez, P., Cancilla, J. C., Matute, G., Chicharro, D., & Torrecilla, J. S. (2015). Inputting molecular weights into a multilayer perceptron to estimate refractive indices of dialkylimidazolium-based ionic liquids - A purity evaluation. Applied Soft Computing Journal, 28, 394–399. https://doi.org/10.1016/j.asoc.2014.12.004

Ezzat, A. O., Atta, A. M., Al-Lohedan, H. A., & Hashem, A. I. (2018). Synthesis and application of new surface active poly (ionic liquids) based on 1,3-dialkylimidazolium as demulsifiers for heavy petroleum crude oil emulsions. Journal of Molecular Liquids, 251, 201–211. https://doi.org/10.1016/j.molliq.2017.12.081

Liang, R., Yang, M., & Xuan, X. (2010). Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide. Chinese Journal of Chemical Engineering, 18(5), 736–741. https://doi.org/10.1016/S1004-9541(09)60122-1

Liu, H., & Yu, H. (2019). Ionic liquids for electrochemical energy storage devices applications. Journal of Materials Science and Technology, 35(4), 674–686. https://doi.org/10.1016/j.jmst.2018.10.007

Namboodiri, V. V., & Varma, R. S. (2002). An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrahedron Letters, 43(31), 5381–5383. https://doi.org/10.1016/S0040-4039(02)01075-4

Orsini, M., Chiarotto, I., Elinson, M. N., Sotgiu, G., & Inesi, A. (2009). Benzoin condensation in 1,3-dialkylimidazolium ionic liquids via electrochemical generation of N-heterocyclic carbene. Electrochemistry Communications, 11(5), 1013–1017. https://doi.org/10.1016/j.elecom.2009.02.045

Palgunadi, J., Kang, J. E., Nguyen, D. Q., Kim, J. H., Min, B. K., Lee, S. D., Kim, H., & Kim, H. S. (2009). Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids. Thermochimica Acta, 494(1–2), 94–98. https://doi.org/10.1016/j.tca.2009.04.022

Rola, K., Zając, A., Czajkowski, M., Szpecht, A., Zdończyk, M., Śmiglak, M., Cybińska, J., & Komorowska, K. (2019). Ionic liquids for active photonics components fabrication. Optical Materials, 89(November 2018), 106–111. https://doi.org/10.1016/j.optmat.2019.01.003

Small, G. W. (1992). Spectrometric Identification of Organic Compounds | R.M. Silverstein, G.C. Bassler and T.C. Morrill, 5th edn., Wiley, New York, 1991 (ISBN 0-471-63404-2). 419 pp. Vibrational Spectroscopy, 4(1), 123–124. https://www.sciencedirect.com/science/article/abs/pii/092420319287024A

Wadhawan, J. D., Schröder, U., Neudeck, A., Wilkins, S. J., Compton, R. G., Marken, F., Consorti, C. S., De Souza, R. F., & Dupont, J. (2000). Ionic liquid modified electrodes. Unusual partitioning and diffusion effects of Fe(CN)64-/3- in droplet and thin layer deposits of 1-methyl-3-(2,6-(S)-dimethylocten-2-yl)-imidazolium tetrafluoroborate. Journal of Electroanalytical Chemistry, 493(1–2), 75–83. https://doi.org/10.1016/S0022-0728(00)00308-9

Wang, G., Fang, S., Luo, D., Yang, L., & Hirano, S. ichi. (2016). Functionalized 1,3-dialkylimidazolium bis(fluorosulfonyl)imide as neat ionic liquid electrolytes for lithium-ion batteries. Electrochemistry Communications, 72, 148–152. https://doi.org/10.1016/j.elecom.2016.09.023

Wang, Y., Wei, L., Li, K., Ma, Y., Ma, N., Ding, S., Wang, L., Zhao, D., Yan, B., Wan, W., Zhang, Q., Wang, X., Wang, J., & Li, H. (2014). Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures. Bioresource Technology, 170, 499–505. https://doi.org/10.1016/j.biortech.2014.08.020

Xiao, C., Wibisono, N., & Adidharma, H. (2010). Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate. Chemical Engineering Science, 65(10), 3080–3087. https://doi.org/10.1016/j.ces.2010.01.033

Yan, B., Li, K., Wei, L., Ma, Y., Shao, G., Zhao, D., Wan, W., & Song, L. (2015). Understanding lignin treatment in dialkylimidazolium-based ionic liquid-water mixtures. Bioresource Technology, 196, 509–517. https://doi.org/10.1016/j.biortech.2015.08.005

Yue, C., Fang, D., Liu, L., & Yi, T. F. (2011). Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. Journal of Molecular Liquids, 163(3), 99–121. https://doi.org/10.1016/j.molliq.2011.09.001

Zec, N., Vraneš, M., Bešter-Rogač, M., Trtić-Petrović, T., Dimitrijević, A., Čobanov, I., & Gadžurić, S. (2018). Influence of the alkyl chain length on densities and volumetric properties of 1,3-dialkylimidazolium bromide ionic liquids and their aqueous solutions. Journal of Chemical Thermodynamics, 121, 72–78. https://doi.org/10.1016/j.jct.2018.02.001

Zhu, X., Song, M., Wang, S., & Dai, S. (2019). Understanding the effect of molecular solvents on the microscopic network of DBU imidazole ionic liquid. Journal of Molecular Liquids, 276, 325–333. https://doi.org/10.1016/j.molliq.2018.11.146

Zicmanis, A., & Anteina, L. (2014). Dialkylimidazolium dimethyl phosphates as solvents and catalysts for the Knoevenagel condensation reaction. Tetrahedron Letters, 55(12), 2027–2028. https://doi.org/10.1016/j.tetlet.2014.02.035.

Descargas

Publicado

2021-08-14

Número

Sección

Ciencias Exactas y de la Tierra

Cómo citar

Síntesis y caracterización del líquido iónico 1-metil-3-(2,6-(S)-dimetiloct-2-ene)-imidazol tetrafluoroborato. Research, Society and Development, [S. l.], v. 10, n. 10, p. e393101018988, 2021. DOI: 10.33448/rsd-v10i10.18988. Disponível em: https://rsdjournal.org/rsd/article/view/18988. Acesso em: 5 dec. 2025.