Modificación de una boquilla de impresora 3D para obtener soportes para uso en medicina regenerativa
DOI:
https://doi.org/10.33448/rsd-v11i6.29472Palabras clave:
Tecnología de extrusión de fusión en caliente, Andamios del tejido, Medicina regenerativa, Ingeniería de tejidos, Impresión tridimensional.Resumen
El uso de soportes biológicos o sintéticos para conducir eventos celulares del proceso regenerativo es una de las principales estrategias en el campo de la medicina regenerativa. Los soportes personalizados producidos por fabricación aditiva demuestran ser una gran solución a este problema. Dos características deseadas que ayudan en la biocompatibilidad de los soportes son la rugosidad de la superficie y la característica geométrica de su topografía, generalmente logradas por un procesamiento químico realizado después de la impresión. Esta investigación presenta la propuesta para obtener una boquilla de impresora 3D capaz de generar directamente una topografía externa sobre los filamentos extruidos, eliminando la necesidad de un paso adicional de postprocesado. La morfología celular y la viabilidad sobre soportes impresos por el método propuesto y convencional fueron evaluadas en experimentos in vitro y la nueva boquilla demostró ser eficiente en la generación de filamentos impresos con un grado de citocompatibilidad superior a los obtenidos por filamentos convencionales.
Referencias
Abdal-hay, A., Sheikh, F. A., Gómez-Cerezo, N., Alneairi, A., Luqman, M., Pant, H. R., & Ivanovski, S. (2022). A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. European Polymer Journal, 162, 110892.
Bakhru, H., Bizios, R., Ricci, J. L., & Supronowicz, P. S. (1996). Analysis of osteoblast mineral deposits on three-dimensional, porous, polylactic acid scaffolds. Trans Annu Meet Soc Biomater Int Biomater Symp, 2: 848.
Bartolo, P., Kruth, J. P., Silva, J., Levy, G., Malshe, A., Rajurkar, K., ... & Leu, M. (2012). Biomedical production of implants by additive electro-chemical and physical processes. CIRP annals, 61(2), 635-655.
Carvalho, R. A. D., Rocha Junior, V. V., Carvalho, A. J. F., Araújo, H. S. S. D., Iemma, M. R. C., Trovatti, E., & Amaral, A. C. (2021). Poly-(lactic acid) and fibrin bioactive cellularized scaffold for use in bone regenerative medicine: Proof of concept. Journal of Bioactive and Compatible Polymers, 36(3), 171-184.
Chaubey, A., Ross, K. J., Leadbetter, R. M., & Burg, K. J. (2008). Surface patterning: tool to modulate stem cell differentiation in an adipose system. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84(1), 70-78.
Cheung, H. Y., Lau, K. T., Lu, T. P., & Hui, D. (2007). A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B: Engineering, 38(3), 291-300.
Designtech. (2018). How Fused Deposition Modeling (FDM) Printers Work. https://www.designtechsys.com/articles/working-fdm-3d-printers.
Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature materials, 4(7), 518-524.
Liu, F., Wang, W., Mirihanage, W., Hinduja, S., & Bartolo, P. J. (2018). A plasma-assisted bioextrusion system for tissue engineering. CIRP Annals, 67(1), 229-232.
Lucon, E. (2013). Effect of Electrical Discharge Machining (EDM) on charpy test results from miniaturized steel specimens. Journal of Testing and Evaluation, 41(1), 1-9.
Machado, J. L. M. (2007). Desenvolvimento de Cimento Ósseo de Fosfato de Cálcio como Suporte para Crescimento de Tecidos, 1–161.
Malekian, M., Mostofa, M. G., Park, S. S., & Jun, M. B. G. (2012). Modeling of minimum uncut chip thickness in micro machining of aluminum. Journal of Materials Processing Technology, 212(3), 553-559.
Mason, C., & Dunnill, P. (2012). A brief definition of regenerative medicine. Regen Med [Internet], 3(1):1–5.
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63.
Ponciano, R. C. de O., Costa, A. C. F. de M., Barbosa, R. C., Fook, M. V. L., & Ponciano, J. J. (2021). Scaffolds de quitosana e hidroxiapatita com amoxicilina para reparação óssea. Research, Society and Development, 10(5), e13410514790.
Pawar, R., U Tekale, S., U Shisodia, S., T Totre, J., & J Domb, A. (2014). Biomedical applications of poly (lactic acid). Recent patents on regenerative medicine, 4(1), 40-51.
Sampogna, G., Guraya, S. Y., & Forgione, A. (2015). Regenerative medicine: Historical roots and potential strategies in modern medicine. Journal of Microscopy and Ultrastructure, 3(3), 101-107.
Serra, T., Mateos-Timoneda, M. A., Planell, J. A., & Navarro, M. (2013). 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine. Organogenesis, 9(4), 239-244.
Stratasys. (2018). Tecnologia FDM. http://www.stratasys.com/br/impressoras-3d/technologies/fdm-technology
Turner, N.; Strong, B.R. & Gold, A. S. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal. 20(3), 192-204.
Zhang, H. X., Du, G. H., & Zhang, J. T. (2004). Assay of mitochondrial functions by resazurin in vitro. Acta Pharmacologica Sinica, 25(3), 385-389.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Franco Henrique Moro; Renata Aquino de Carvalho; Hernane da Silva Barud; André Capaldo Amaral; Eraldo Jannone da Silva

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.
