Interfaz cerebro-máquina: avances en neurociencia y desarrollo de bioelectrodos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i12.35046

Palabras clave:

Neurociencias, Neurología, Rehabilitación.

Resumen

Objetivo: Presentar acerca de las actualizaciones de este campo de investigación en los últimos años. Metodología: Se trata de una revisión narrativa que son publicaciones más amplias. Se realizaron búsquedas en las bases de dados PubMed y en la Biblioteca Virtual en Salud (BVS). Se utilizó los descriptores en ciencias de salud (DeCS) y Medical Subject Headings(MeSH): “Brain-Computer Interfaces”, “Nervous System”, “Cerebrum” e  “Neurosciences.” Fueron incluidos artículos publicados entre los años de 2017 y 2022, en portugués e inglés y que abordasen avances de la interfaz cerebro-máquina. Resultados: Fueron encontrados 17 artículos que se encajaron en los criterios de inclusión, todos en inglés. Las investigaciones demostraron avances significativos que pueden ser empleados en procesos de rehabilitación física, motora y sensorial. Conclusión: Se verificó la aplicación de protocolos y método diferentes, lo que puede ser un escollo para la replicación de futuros estudios; sin embargo, también hubiera avances en lo desenvolvimiento de electrodos biocompatibles a partir de prolongamientos de axones, que pueda disminuir el proceso inflamatorio en implantes intracorticales, y el perfeccionamiento de codificación y decodificación por métodos no invasivos acoplados en diferentes partes del cuerpo.

Biografía del autor/a

  • Wanderson Silva Macedo de Sousa, Centro Universitário Uninovafapi

    Bacharel em fisioterapia e pós graduando em neurociência clínica. 

  • Danielle Costa Lopes, Universidade Federal do Piauí

    Mestranda em farmacologia pela Universidade Federal do Piauí.

    Bacharel em Fármacia. 

  • Diego Agripino Chagas Silva, Centro Universitário Uninovafapi

    Acadêmico de medicina 

  • Ana Claudia de Miranda Adad, Centro Universitário Uninovafapi

    Especialista em ergonomia 

  • Jonatas Paulino da Cunha Monteiro Ribeiro, Universidade Federal do Piauí

    Acadêmico de medicina

  • Lyslly Rhanny Soares de Deus , Centro Universitário Facid | Devry

    Bacharel em terapia ocupacional

  • Gabriela Veiga Macêdo e Araújo, Centro Universitário Uninovafapi

    Acadêmica de medicina

  • Matheus Sam do Santos Lemos, Centro Universitário Uninovafapi

    Acadêmico de medicina 

  • Tayane de Jesus Bispo, Universidade Federal de Sergipe

    Acadêmica de medicina

  • Celina Araújo Veras, Universidade Estadual do Piauí

    Bacharel em fisioterapia 

Referencias

Araki, T., Uemura, T., Yoshimoto, S., Takemoto, A., Noda, Y., Izumi, S., & Sekitani, T. (2019). Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet Containing Metal Nanowires. Adv Mater , 32(15):e1902684. 10.1002/adma.201902684.

Barria, P., Pino, A., Tovar, N., Gomez-Vargas, D., Baleta, K., Díaz, C. A. R., Múnera, M., & Cifuentes, C. A.(2021). BCI-Based Control for Ankle Exoskeleton T-FLEX: Comparison of Visual and Haptic Stimuli with Stroke Survivors. Sensors (Basel), 21(19):6431. 10.3390/s21196431

Carino-Escobar, R. I., & Cantillo-Negrete, J. (2020). Interfaces cérebro-computador para reabilitação motora de membros superiores de pacientes com acidente vascular cerebral. Revista mexicana de engenharia biomédica , 41 (1), 128-140. https://doi.org/10.17488/rmib.41.1.10

Cheng, J., Jin, J., & Wang, X. (2017). Comparison of the BCI Performance between the Semitransparent Face Pattern and the Traditional Face Pattern. Comput Intell Neurosci, 1323985. 10.1155/2017/1323985.

da Silva Pinto, M. A. (2011a). Estudo do potencial evocado visual em regime permanente baseado em LED para interface cérebro máquina. publicado no site da Universidade Federal de Minas Gerais. http://hdl.handle.net/1843/BUOS-8R3HN7

de Melo, G. C. (2018). Algoritmos para reconhecimento de padrões em imagética motora em uma interface cérebro-máquina. publicado no site da Puc-Rio.. https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34769@1

de Souza, J. R. M., de Aquino Wanderley, D., & da Silva Dória, Ã. (2015). A importância da robótica aplicada à neurociência como ferramenta utilizada na reabilitação de pacientes com deficiências locomotora: uma revisão teórica. Ciências da Engenharia , 3 (1),61. https://sustenere.co/index.php/engineeringsciences/article/view/SPC2318-3055.2015.001.0001

Hermann, J. K., & Capadona J. R. (2019) Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng,46(4):341-367. doi: 10.1615/CritRevBiomedEng.2018027166.

Hu, K., Jamali, M., Moses, Z. B., Ortega, C. A., Friedman, G. N., Xu, W., & Williams, Z. M. (2018). Decoding unconstrained arm movements in primates using high-density electrocorticography signals for brain-machine interface use. Sci Rep, 8(1):10583. doi: 10.1038/s41598-018-28940-7.

Jochumsen, M., Cremoux, S., Robinault, L., Lauber, J., Arceo, J. C., Navid, M. S., Nedergaard, R. W., Rashid, U., Haavik, H., & Niazi, I. K. (2018). Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. Sensors (Basel) , 8(11):3761. 10.3390/s18113761.

Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., & Ball, T. (2018). Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing. Journal of Neural Engineering, 15(4). https://iopscience.iop.org/article/10.1088/1741-2552/aabfa5

Loza, C. A., Reddy, C. G., Akella, S., & Príncipe, J. C.(2019). Discrimination of Movement-Related Cortical Potentials Exploiting Unsupervised Learned Representations From ECoGs. Front Neurosci,13:1248. 10.3389/fnins.2019.01248.

Luan, L., Robinson, J. T., Aazhang, B., Chi, T., Yang, K., Li, X., Rathore, H., Singer, A., Yellapantula, S., Fan, Y., Yu, Z., & Xie, C. (2020).Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability. Neuron. 108(2):302-321. 10.1016/j.neuron.2020.10.011.

Maghsoudi, A., & Shalbaf, A.(2022). Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals. J Biomed Phys Eng, 2(2):161-170. 10.31661/jbpe.v0i0.1264.

R. Schuh Ânderson, Lima A., de O. Heidrich, R., Mossmann, J., Flores, C., R. Bez, M. (2013) Desenvolvimento de Um Simulador Controlado por Interface Cérebro- Computador Não Invasiva para Treinamento na Utilização de Cadeira de Rodas. RENOTE, 11(3). https://www.seer.ufrgs.br/index.php/renote/article/view/44716

Risso, G., Valle, G., Iberite, F., Strauss, I., Stieglitz, T., Controzzi, M., Clemente, F., Granata, G., Rossini, P. M., Micera, S., & Baud-Bovy, G.(2019) Optimal integration of intraneural somatosensory feedback with visual information: a single-case study. Sci Rep, 9(1):7916. 10.1038/s41598-019-43815-1

Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Scielo, 20(2). https://www.scielo.br/j/ape/a/z7zZ4Z4GwYV6FR7S9FHTByr/#

Schuh, Â. R., Lima, A., de O. Heidrich, R., Mossmann, J., Flores, C., & Bez, M. R. (2013). Desenvolvimento de Um Simulador Controlado por Interface Cérebro- Computador Não Invasiva para Treinamento na Utilização de Cadeira de Rodas. RENOTE, 11(3), 1–9. https://seer.ufrgs.br/index.php/renote/article/view/44716

Sebastián-Romagosa M., Cho, W., Ortner, R., Murovec, N., Von Oertzen, T., Kamada, K., Allison, B. Z., & Guger, C.(2020) Brain Computer Interface Treatment for Motor Rehabilitation of Upper Extremity of Stroke Patients-A Feasibility Study. Front Neurosci,14:591435. 10.3389/fnins.2020.591435

Serruya, M. D., Harris, J. P., Adewole, D. O., Struzyna, L. A., Burrell, J. C., Nemes, A., Petrov, D., Kraft, R. H., Chen, H. I., Wolf, J. A., & Cullen, D. K. (2017)Engineered Axonal Tracts as "Living Electrodes" for Synaptic-Based Modulation of Neural Circuitry. Adv Funct Mater. 28(12):1701183. 10.1002/adfm.201701183.

Souza, J. P. G., Krizan, J., Costa, G. de M., & Fermoseli, A. F. de O. (2015). Interface cérebro – máquina (icm): da transdução do estímulo externo em impulso nervoso a tradução em comandos digitais. Caderno De Graduação - Ciências Biológicas E Da Saúde - UNIT, 3(1), 139–152. https://periodicos.set.edu.br/fitsbiosaude/article/view/2634

Stavisky, S. D., Kao, J. C., Ryu, S. I., & Shenoy, K. V. (2017).Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions. Neuron, 95(1):195-208.e9. 10.1016/j.neuron.2017.05.023.

Tang, J., Liu, Y., Hu, D., & Zhou, Z.(2018). Towards BCI-actuated smart wheelchair system. Biomed Eng Online,17(1):111. 10.1186/s12938-018-0545-x

Twardowski, M. D., Roy, S. H., Li, Z., Contessa, P., De Luca, G., & Kline, J. C. (2018).Motor unit drive: a neural interface for real-time upper limb prosthetic control. J Neural Eng, 6(1):016012. 10.1088/1741-2552/aaeb0f.

Wang, C. H., & Tsai, K. Y.(2022).Optimization of machine learning method combined with brain-computer interface rehabilitation system. J Phys Ther Sci. ,34(5):379-385. 10.1589/jpts.34.379

Wen, D., Fan, Y., Hsu, S. H., Xu, J., Zhou, Y., Tao, J., Lan, X., & Li, F. (2021).Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review. Ann Phys Rehabil Med. 2021 Jan;64(1):101404

Publicado

2022-09-22

Número

Sección

Ciencias de la salud

Cómo citar

Interfaz cerebro-máquina: avances en neurociencia y desarrollo de bioelectrodos. Research, Society and Development, [S. l.], v. 11, n. 12, p. e489111235046, 2022. DOI: 10.33448/rsd-v11i12.35046. Disponível em: https://rsdjournal.org/rsd/article/view/35046. Acesso em: 6 dec. 2025.