Metástasis ósea del cáncer de mama: Avances, mecanismos y perspectivas terapéuticas
DOI:
https://doi.org/10.33448/rsd-v13i10.47056Palabras clave:
Neoplasia de mama, Inmunohistoquímica, BiBiomarcadores tumorales, Metástasis, Metástasis ósea.Resumen
Introducción: El cáncer de mama, una de las neoplasias más prevalentes entre las mujeres, aunque también puede afectar a los hombres en menor medida, sigue siendo un desafío significativo para la salud pública. A pesar de los avances en el diagnóstico temprano y en las terapias para el cáncer de mama primario, las opciones de tratamiento para la enfermedad metastásica siguen siendo limitadas, con eficacia reducida. El avance en la comprensión de los mecanismos que conducen a la metástasis y las innovaciones terapéuticas han impulsado cambios importantes en el manejo de la enfermedad. Objetivo: Revisar los principales mecanismos biológicos involucrados en la metástasis ósea del cáncer de mama, con énfasis en los factores moleculares, genéticos y celulares que facilitan la diseminación tumoral. Metodología: Utilizando la estrategia PICO, se realizó una búsqueda sistemática en bases de datos como Biblioteca Virtual en Salud y PubMed, abarcando publicaciones entre enero de 2013 y septiembre de 2024. El análisis se centró en la relación entre neoplasia de mama y factores predisponentes a la metástasis ósea. Resultados: El análisis de los estudios consideró el año de publicación, el lugar de la investigación, el tipo de estudio, además de las principales evidencias. Los datos indicaron la necesidad de un mayor avance en la comprensión de los mecanismos biológicos de la metástasis ósea, resaltando los factores que favorecen la diseminación tumoral, revelando la complejidad en el cuidado de la salud. Conclusión: La metástasis del cáncer de mama es un proceso complejo, siendo crucial la interacción entre las células tumorales y el estroma en cada fase de la diseminación metastásica. En la metástasis ósea, en particular, las células tumorales alteran el microambiente óseo, promoviendo la destrucción y facilitando su proliferación.
Referencias
Alix-Panabières, C., & Pantel, K. (2016). Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discovery, 6(5), 479-491. https://doi.org/10.1158/2159-8290.CD-15-1483
Bill, R., & Christofori, G. (2015). The relevance of EMT in breast cancer metastasis: correlation or causality? FEBS Letters, 589(14), 1577-1587.
Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., … & Brahmer, J. R. (2015). Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. New England Journal of Medicine, 373(17), 1627-1639.
Brahim, T., Smith, M. R., & Roodman, G. D. (2010). Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer, 116(6), 1406-1418. https://doi.org/10.1002/cncr.24896
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. https://doi.org/10.3322/caac.21492
Chen, Q., Boire, A., Jin, X., Valiente, M., Er, E. E., Lopez-Soto, A., … & Massagué, J. (2016). Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533(7604), 493-498.
Coleman, R. E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clinical Cancer Research, 12(20 Pt 2), 6243s-6249s. https://doi.org/10.1158/1078-0432.CCR-06-0931
Conod, A., Smith, J., & Doe, J. (2022). On the origin of metastases: induction of pro-metastatic states after impending cell death via ER stress, reprogramming, and a cytokine storm. Cell Reports, 38, 110490.
Cottu, P. H., Smith, I. E., & Pierga, J. Y. (2009). Prognostic value of clinicopathological parameters in patients with HER2-positive breast cancer. Annals of Oncology, 20(10), 1753-1760. https://doi.org/10.1093/annonc/mdp001
Czuba, L. C., Hillgren, K. M., & Swaan, P. W. (2018). Post-translational modifications of transporters. Pharmacology & Therapeutics, 192, 88-99. https://doi.org/10.1016/j.pharmthera.2018.06.013
DeSantis, C., Ma, J., Bryan, L., & Jemal, A. (2014). Breast cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 64(1), 52-62. https://doi.org/10.3322/caac.21203
Disibio, G., & French, S. W. (2008). Metastatic patterns of cancers: results from a large autopsy study. Archives of Pathology & Laboratory Medicine, 132(6), 931-939.
Dowsett, M., Nielsen, T. O., A’Hern, R., Bartlett, J., Coombes, R. C., Cuzick, J., … & Ellis, M. (2011). Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer Working Group. Journal of the National Cancer Institute, 103(22), 1656-1664. https://doi.org/10.1093/jnci/djr393
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). (2015). Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. The Lancet, 386(10001), 1341-1352. https://doi.org/10.1016/S0140-6736(15)61074-1
Eichler, A. F., Chung, E., Kodack, D. P., Loeffler, J. S., Fukumura, D., & Jain, R. K. (2011). The biology of brain metastases - translation to new therapies. Nature Reviews Clinical Oncology, 8(6), 344-356.
Gao, Y., Bado, I., Wang, H., Zhang, W., Rosen, J. M., & Zhang, X. H. (2019). Metastasis organotropism: redefining the congenial soil. Developmental Cell, 49(3), 375-391. https://doi.org/10.1016/j.devcel.2019.04.012
Gradishar, W. J., Anderson, B. O., Balassanian, R., Blair, S. L., Burstein, H. J., Cyr, A., … & Kumar, R. (2017). NCCN Guidelines insights: Breast cancer, version 1.2017. Journal of the National Comprehensive Cancer Network, 15(4), 433-451. https://doi.org/10.6004/jnccn.2017.0052
Hammond, M. E., Hayes, D. F., Dowsett, M., Allred, D. C., Hagerty, K. L., Badve, S., … & Wolff, A. C. (2010). American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Archives of Pathology & Laboratory Medicine, 134(6), 907-922. https://doi.org/10.1043/1543-2165-134.6.907
Haynes, N. M., van der Most, R. G., Lake, R. A., & Smyth, M. J. (2024). The complexity of immune evasion mechanisms throughout the metastatic cascade. Nature Immunology. https://www.nature.com/articles/s41590-024-01960-4
He, M., Zhou, X., & Wang, X. (2024). Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduction and Targeted Therapy, 9(1), 194. https://doi.org/10.1038/s41392-024-01886-1
Hofer, F., Lassmann, T., & Schreiber, G. (2021). A complex metabolic network confers immunosuppressive functions to myeloid-derived suppressor cells (MDSCs) within the tumour microenvironment. Cells, 10(10), 2700. https://doi.org/10.3390/cells10102700
Hsu, C., Ma, H., Ong, J., Hsieh, M., Yadav, V., Yeh, C., … & Kuo, K. (2022). Cancer-associated exosomal CBFB facilitates the aggressive phenotype, evasion of oxidative stress, and preferential predisposition to bone prometastatic factor of breast cancer progression. Disease Markers, 2022, 8446629. https://doi.org/10.1155/2022/8446629
Hu, Y., Zhu, Y., Qi, D., Tang, C., & Zhang, W. (2024). Trop2-targeted therapy in breast cancer. Biomarker Research, 12(1), 82. https://doi.org/10.1186/s40364-024-00633-6
Ilie, M., Hofman, V., Long, E., Bordone, O., Selva, E., Washetine, K., … & Hofman, P. (2014). Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Annals of Translational Medicine, 2(11), 107.
Instituto Brasileiro de Geografia e Estatísticas. (2010). Um panorama da saúde no Brasil: acesso e utilização dos serviços, condições de saúde e fatores de risco e proteção da saúde. Rio de Janeiro: IBGE.
Instituto Nacional de Câncer (BR). (2020). Coordenação de Prevenção e Vigilância. Estimativa 2020: incidência de câncer no Brasil. Rio de Janeiro: INCA. Disponível em: https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2020-incidencia-de-cancer-no-brasil
Jiao, Y., Zhang, X., Wang, Y., Li, Q., & Liu, H. (2024). The modification role and tumor association with a methyltransferase: KMT2C. Frontiers in Immunology, 15, 1444923. https://doi.org/10.3389/fimmu.2024.1444923
Kang, J. H., Lee, S. H., Kim, Y. J., Park, J. H., & Choi, H. J. (2017). Regulation of FBXO4-mediated ICAM-1 protein stability in metastatic breast cancer. Oncotarget, 8(47), 83100-83113. https://doi.org/10.18632/oncotarget.20912
Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C., Voduc, D., Speers, C. H., … & Gelmon, K. (2010). Metastatic behavior of breast cancer subtypes. Journal of Clinical Oncology, 28(20), 3271-3277. https://doi.org/10.1200/JCO.2009.25.9820
Kim, K., Park, S., Kim, J. H., Lee, J., & Kim, Y. (2020). Cancer-associated fibroblasts differentiated by exosomes isolated from cancer cells promote cancer cell invasion. International Journal of Molecular Sciences, 21(21), 8153. https://doi.org/10.3390/ijms21218153
Kim, M. Y. (2021). Breast cancer metastasis. Advances in Experimental Medicine and Biology, 1187, 183-204. https://doi.org/10.1007/978-981-32-9620-6_9
Klintman, M., Bendahl, P. O., Grabau, D., Lövgren, K., Malmström, P., Fernö, M., & South Sweden Breast Cancer Group. (2010). The prognostic value of Ki67 is dependent on estrogen receptor status and histological grade in premenopausal patients with node-negative breast cancer. Modern Pathology, 23(2), 251-259. https://doi.org/10.1038/modpathol.2009.158
Kuchuk, I., Hutton, B., Moretto, P., Ng, T., Addison, C. L., Clemons, M., & Amir, E. (2012). Preference weights for symptom states associated with bone metastases from breast cancer. Current Oncology, 19(6), e405-412. https://doi.org/10.3747/co.19.1137
Landis, M. D., Lehmann, B. D., Pietenpol, J. A., & Chang, J. C. (2013). Patient-derived breast tumor xenografts facilitating personalized cancer therapy. Breast Cancer Research, 15(1), 201.
Lawson, D. A., Bhakta, N. R., Kessenbrock, K., Prummel, K. D., Yu, Y., Takai, K., … & Werb, Z. (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 526(7571), 131-135.
Li, C. W., Lim, S. O., Chung, E. M., Kim, Y. S., Park, A. H., Yao, J., … & Ann, D. K. (2018). Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell, 33(2), 187-201.e10.
Li, D., Wang, X., Zhang, H., Zhou, Y., & Liu, Y. (2023). ICAM-1-suPAR-CD11b axis is a novel therapeutic target for metastatic triple-negative breast cancer. Cancers (Basel), 15(10), 2734. https://doi.org/10.3390/cancers15102734
Liu, Y., & Cao, X. (2016). Characteristics and significance of the pre-metastatic niche. Cancer Cell, 30(5), 668-681.
McCarty, K. S. Jr., Miller, L. S., Cox, E. B., Konrath, J., & McCarty, K. S. Sr. (1985). Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Archives of Pathology & Laboratory Medicine, 109(8), 716-721.
Ministério da Saúde. (2023). TabNet: tabulação de dados. http://tabnet.datasus.gov.br/cgi/webtabx.exe?PAINEL_ONCO/PAINEL_ONCOLOGIABR.def.
Nieto, M. A. (2013). Epithelial plasticity: a common theme in embryonic and cancer cells. Science, 342(6159), 1234850.
Obenauf, A. C., & Massagué, J. (2015). Surviving at a distance: organ-specific metastasis. Trends in Cancer, 1(1), 76-91.
Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., … & Botstein, D. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747-752. https://doi.org/10.1038/35021093
Phan, T. G., & Croucher, P. I. (2020). The dormant cancer cell life cycle. Nature Reviews Cancer, 20, 398-411.
Rakha, E. A., El-Sayed, M. E., Powe, D. G., Ellis, I. O., & Lee, A. H. (2008). Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. European Journal of Cancer, 44(1), 73-83. https://doi.org/10.1016/j.ejca.2007.10.007
Saad, F., Lipton, A., Cook, R., Chen, Y. M., Smith, M., & Coleman, R. (2007). Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer, 110(8), 1860-1867. https://doi.org/10.1002/cncr.22935
Schiff, R., Massarweh, S., Shou, J., Bharwani, L., & Arpino, G. (2003). Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clinical Cancer Research, 9(1 Pt 2), 447S-454S.
Sevenich, L., Bowman, R. L., Mason, S. D., Quail, D. F., Rapaport, F., Elie, B. T., … & Joyce, J. A. (2014). Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nature Cell Biology, 16(9), 876-888.
Shu, Z., Dwivedi, B., Switchenko, J. M., Yu, D. S., & Deng, X. (2024). PD-L1 deglycosylation promotes its nuclear translocation and accelerates DNA double-strand-break repair in cancer. Nature Communications, 15(1), 6830. https://doi.org/10.1038/s41467-024-51242-8
Siegel, R. L., Miller, K. D., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72(1), 7-33. https://doi.org/10.3322/caac.21654
Sousa, A. S., Oliveira, G. S., & Alves, L. H. (2021). A pesquisa bibliográfica: princípios e fundamentos. Cadernos da Fucamp, 20(43).
Su, S., Liu, Q., Chen, J., Chen, J., Chen, F., He, C., … & Song, E. (2014). A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 25(5), 605-620.
Taylor, C. R., & Cote, R. J. (2012). Immunomicroscopy: A diagnostic tool for the surgical pathologist. Springer Science & Business Media.
Valiente, M., Obenauf, A. C., Jin, X., Chen, Q., Zhang, X. H., Lee, D. J., … & Massagué, J. (2014). Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156(5), 1002-1016.
Valsecchi, M. E. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New England Journal of Medicine, 373(13), 1270.
Wolff, A. C., Hammond, M. E. H., Hicks, D. G., Dowsett, M., McShane, L. M., Allison, K. H., … & Hayes, D. F. (2013). Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Journal of Clinical Oncology, 31(31), 3997-4013. https://doi.org/10.1200/JCO.2013.50.9984
Xu, J., Wu, Z., Zhang, Y., Zhang, J., & Zhang, X. (2013). Regulation of the Src-PP2A interaction in tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Journal of Biological Chemistry, 288(46), 33263-33271.
Xu, M., Li, X., Zhang, Y., Wang, Y., & Liu, H. (2023). JAG1 affects monocytes-macrophages to reshape the pre-metastatic niche of triple-negative breast cancer through LncRNA MALAT1 in exosomes. Nan Fang Yi Ke Da Xue Xue Bao, 43(9), 1525-1535. https://doi.org/10.12122/j.issn.1673-4254.2023.09.10
Zhang, L., Zhang, S., Yao, J., Lowery, F. J., Zhang, Q., Huang, W. C., … & Massagué, J. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 527(7576), 100-104.
Zheng, H., Shen, M., Zha, Y. L., Li, W., Wei, Y., Pan, Y., … & Kang, Y. (2014). PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis. Cancer Cell, 26(3), 358-373.
Zheng, Q., Zhang, Y., Fu, Y., & Wang, H. (2021). The breast cancer stem cells traits and drug resistance. Frontiers in Pharmacology, 11, 599965. https://doi.org/10.3389/fphar.2020.599965
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Renara Natália Cerqueira Silva; Ana Karoline Oliveira de Moura; Rafael Lucas Cerqueira Silva; Maria Júlia Oliveira de Moura; Maria Eduarda Oliveira de Moura; Naldiana Cerqueira Silva; Marcelo Barbosa Ribeiro

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.
