Susceptibilidad Genética y Factores Infecciosos en el desarrollo de enfermedades autoinmunes: El papel del SARS-CoV-2

Autores/as

DOI:

https://doi.org/10.33448/rsd-v14i8.49396

Palabras clave:

Enfermedades autoinmunes, Factores genéticos, SARS-CoV-2.

Resumen

El sistema inmunológico actúa a través de múltiples mecanismos, no solo protegiendo contra agentes extraños, sino también combatiendo neoplasias y rechazando injertos. Además, cuenta con mecanismos selectivos de autotolerancia para evitar ataques a los antígenos propios del organismo. La desregulación de estos mecanismos, que puede ser causada por alteraciones genéticas y/o la acción de agentes infecciosos, culmina en el desarrollo de enfermedades autoinmunes (EA). Defectos genéticos, como cambios en los genes responsables del complejo principal de histocompatibilidad (MHC) y polimorfismos, pueden contribuir a la etiología de estas enfermedades. Asimismo, bacterias y virus pueden influir en la fisiopatología de estas enfermedades al inducir una inflamación intensa que lleva a lesiones endoteliales o estimula la expresión de autoanticuerpos, como ocurre durante la infección por SARS-CoV-2. En el caso específico del virus causante de la Covid-19, este puede agravar el pronóstico de pacientes con enfermedades autoinmunes preexistentes y contribuir a su cronificación. En este contexto, el objetivo del presente trabajo es realizar una revisión sistemática de la literatura sobre los factores genéticos y el papel de las infecciones en el desarrollo de enfermedades autoinmunes.

Referencias

Alzabin, S., & Venables, P. J. (2012). Etiology of autoimmune disease: Past, present and future. Expert Review of Clinical Immunology, 8(2), 111-113. https://doi.org/10.1586/eci.11.88

Bigley, T. M., & Cooper, M. A. (2021). Monogenic autoimmunity and infectious diseases: The double-edged sword of immune dysregulation. Current Opinion in Immunology, 72, 230-238. https://doi.org/10.1016/j.coi.2021.06.013

Booth, A., Sutton, A., Papaioannou, D. (2016). Systematic approaches to a successful literature review. Sage Publications.

Boussier, J., et al. (2022). Severe COVID-19 is associated with hyperactivation of the alternative complement pathway. Journal of Allergy and Clinical Immunology, 149(2), 550-556.e2. https://doi.org/10.1016/j.jaci.2021.11.004

Bruserud, Ø., et al. (2016). AIRE-mutations and autoimmune disease. Current Opinion in Immunology, 43, 8-15. https://doi.org/10.1016/j.coi.2016.07.003

Costa, A. L. P., Silva-Júnior, A. C. S., & Pinheiro, A. L. (2019). Fatores associados a etiologia e patogênese das doenças autoimunes. Arquivos Catarinenses de Medicina, 48(2), 92-106.

Deng, Q., et al. (2019). The emerging epigenetic role of CD8+T cells in autoimmune diseases: A systematic review. Frontiers in Immunology, 10, 856. https://doi.org/10.3389/fimmu.2019.00856

Fousteri, G., & Jhatakia, A. D. (2019). Viral infections and autoimmune disease: Roles of LCMV in delineating mechanisms of immune tolerance. Viruses, 11(10), 885. https://doi.org/10.3390/v11100885

Freire-de-Lima, L., et al. (2021). Autoimmune disorders & COVID-19. Medicines, 8(10), 55. https://doi.org/10.3390/medicines8100055

Gough, D., Oliver, S., Thomas, J. (2017). An introduction to systematic reviews. Sage Publications.

Gracia-Ramos, A. E., & Saavedra-Salinas, M. Á. (2021). Can the SARS-CoV-2 infection trigger systemic lupus erythematosus? A case-based review. Rheumatology International, 41(4), 799-809. https://doi.org/10.1007/s00296-021-04794-7

Halpert, G., & Shoenfeld, Y. (2020). SARS-CoV-2, the autoimmune virus. Autoimmunity Reviews, 19(12), 102695. https://doi.org/10.1016/j.autrev.2020.102695

Higgins, J. P. T., Thomas, J., Chandler, J., et al. (Eds.). (2022). Cochrane Handbook for Systematic Reviews of Interventions (version 6.3). Cochrane. https://training.cochrane.org/handbook

Hoshino, K., et al. (2010). Anti-MDA5 and anti-TIF1-γ antibodies have clinical significance for patients with dermatomyositis. Rheumatology, 49(9), 1726-1733. https://doi.org/10.1093/rheumatology/keq153

Karaderi, T., et al. (2020). Host genetics at the intersection of autoimmunity and COVID-19: A potential key for heterogeneous COVID-19 severity. Frontiers in Immunology, 11, 586111. https://doi.org/10.3389/fimmu.2020.586111

Karami Fath, M., et al. (2021). SARS-CoV-2 proteome harbors peptides which are able to trigger autoimmunity responses: Implications for infection, vaccination, and population coverage. Frontiers in Immunology, 12, 705772. https://doi.org/10.3389/fimmu.2021.705772

Kato, H., et al. (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 441(7089), 101-105. https://doi.org/10.1038/nature04734

Knight, J. S., et al. (2021). The intersection of COVID-19 and autoimmunity. Journal of Clinical Investigation, 131(24), 154886. https://doi.org/10.1172/jci154886

Kos, I., et al. (2021). Increased B-cell activity with consumption of activated monocytes in severe COVID-19 patients. European Journal of Immunology, 51(6), 1449-1460. https://doi.org/10.1002/eji.202049163

Kumar, P., et al. (2019). Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cellular Immunology, 339, 41-49. https://doi.org/10.1016/j.cellimm.2018.09.008

Lin, X., & Lu, L. (2020). B cell-mediated autoimmune diseases. Advances in Experimental Medicine and Biology, 145-160. https://doi.org/10.1007/978-981-15-3532-1_11

Littera, R., et al. (2020). Human leukocyte antigen complex and other immunogenetic and clinical factors influence susceptibility or protection to SARS-CoV-2 infection and severity of the disease course: The Sardinian experience. Frontiers in Immunology, 11, 605688. https://doi.org/10.3389/fimmu.2020.605688

Lorenz, M. H., & Herrmann, J. R. (2001). The pathogenesis of autoimmune diseases. Scandinavian Journal of Clinical and Laboratory Investigation, 61(235), 16-26. https://doi.org/10.1080/003655101753352004

Malik, Y. S., et al. (2020). Emerging novel coronavirus (2019-NCoV) - Current scenario, evolutionary perspective based on genome analysis and recent developments. Veterinary Quarterly, 1-12. https://doi.org/10.1080/01652176.2020.1727993

Mitratza, M., et al. (2020). Systemic autoimmune disease as a cause of death: Mortality burden and comorbidities. Rheumatology, 60(3), 1321-1330. https://doi.org/10.1093/rheumatology/keaa537

Mobasheri, L., et al. (2022). SARS-CoV-2 triggering autoimmune diseases. Cytokine, 154, 155873. https://doi.org/10.1016/j.cyto.2022.155873

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

Murimi, I. B., et al. (2020). Health care utilization and costs of systemic lupus erythematosus by disease severity in the United States. The Journal of Rheumatology, 47(7), 999-1007. https://doi.org/10.3899/jrheum.191187

Murugan, A. K., & Alzahrani, A. S. (2021). SARS-CoV-2 plays a pivotal role in inducing hyperthyroidism of Graves' disease. Endocrine, 73(2), 243-254. https://doi.org/10.1007/s12020-021-02770-6

Nunez-Castilla, J., et al. (2022). Potential autoimmunity resulting from molecular mimicry between SARS-CoV-2 spike and human proteins. Viruses, 14(7), 1415. https://doi.org/10.3390/v14071415

Oglesby, A., et al. (2014). Impact of early versus late systemic lupus erythematosus diagnosis on clinical and economic outcomes. Applied Health Economics and Health Policy, 12(2), 179-190. https://doi.org/10.1007/s40258-014-0085-x

Omarjee, L., et al. (2020). Immunometabolism at the cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. Aging. https://doi.org/10.18632/aging.202422

Opdenakker, G., & Van Damme, J. (2021). Interferons and other cytokines, genetics and beyond in COVID-19 and autoimmunity. Cytokine & Growth Factor Reviews, 58, 134-140. https://doi.org/10.1016/j.cytogfr.2021.01.004

Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria: Editora da UFSM.

Rivera, E. G., et al. (2022). SARS-CoV-2/COVID-19 and its relationship with NOD2 and ubiquitination. Clinical Immunology, 238, 109027. https://doi.org/10.1016/j.clim.2022.109027

Sacchi, M. C., et al. (2021). SARS-CoV-2 infection as a trigger of autoimmune response. Clinical and Translational Science, 14(3), 898-907. https://doi.org/10.111

Sollid, L. M., et al. (2014). Molecular mechanisms for contribution of MHC molecules to autoimmune diseases. Current Opinion in Immunology, 31, 24-30. https://doi.org/10.1016/j.coi.2014.08.005

Thomas, J., Brunton, J., Graziosi, S. (2017). EPPI-Reviewer 4: Software for research synthesis. EPPI-Centre Software.

Wang, L., et al. (2015). Human autoimmune diseases: A comprehensive update. Journal of Internal Medicine, 278(4), 369-395. https://doi.org/10.1111/joim.12395

Wong, C. K., et al. (2004). Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clinical & Experimental Immunology, 136(1), 95-103. https://doi.org/10.1111/j.1365-2249.2004.02415.x

Yoshikawa, T., et al. (2008). Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. Journal of Virology, 83(7), 3039-3048. https://doi.org/10.1128/jvi.01792-08

Publicado

2025-08-29

Número

Sección

Ciencias de la salud

Cómo citar

Susceptibilidad Genética y Factores Infecciosos en el desarrollo de enfermedades autoinmunes: El papel del SARS-CoV-2. Research, Society and Development, [S. l.], v. 14, n. 8, p. e8114849396, 2025. DOI: 10.33448/rsd-v14i8.49396. Disponível em: https://rsdjournal.org/rsd/article/view/49396. Acesso em: 6 dec. 2025.