Atividade de biomarcadores bioquimicos em gafanhotos Abracris flavolineata (De Geer, 1773) (Orthoptera: Acrididae: Ommatolampidinae)

Autores

DOI:

https://doi.org/10.33448/rsd-v10i11.19877

Palavras-chave:

Glutathiona S-transferase, Estresse Oxidativo, Enzima, Catalase.

Resumo

Os biomarcadores bioquímicos são comumente usados em programas de monitoramento ambiental por serem sensíveis à presença de determinados poluentes. Assim, a resposta desse biomarcadores pode ser utilizada como um indicador de qualidade ambiental. O presente estudo teve como objetivos determinar a atividade das enzimas catalase (CAT) e glutationa-S-transferase (GST) de gafanhotos Abracris flavolineata (De Geer, 1773), coletados em área duas áreas de remanescente florestal na Serra da Jiboia (BA) e comparar a atividade destas enzimas entre machos e fêmeas. As coletas dos espécimes foram realizadas em dois pontos situados na Serra da Jiboia (Bahia, Brasil), denominados ‘Baixa de Areia’ e ‘Baixa Grande’. Os insetos foram capturados por meio de busca ativa com auxílio de rede entomológica, no período matutino, e esforço de coleta com 2,5 h de duração. No total, foram coletados 160 indivíduos, sendo 80 exemplares provenientes de cada ponto amostral, com 50 machos e 30 fêmeas. Após a identificação procedeu-se incisão na região lateral do abdômen para retirada do intestino médio, que foi utilizado para extração das enzimas CAT e GST. Os resultados obtidos demonstraram que a atividade da CAT e GST não variou significativamente entre os pontos de coletas, entretanto, em relação ao sexo, a atividade das enzimas foi significativamente maior nos machos (p<0,005), em ambos os pontos amostrados. Este estudo é pioneiro na avaliação das respostas da atividade da CAT e GST em gafanhotos no Brasil.

Referências

Aebi, H. (1984). [13] Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

Afiyanti, M., & Chen, H. J. (2014). Catalase activity is modulated by calcium and calmodulin in detached mature leaves of sweet potato. Journal of Plant Physiology, 171(2), 35–47. https://doi.org/10.1016/j.jplph.2013.10.003

Ahmad, S. (1992). Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochemical Systematics and Ecology, 20(4), 269–296. https://doi.org/10.1016/0305-1978(92)90040-k

Appel, H. M. (2017). [Chapter 7] The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens. In Insect-Plant Interactions - Volume V (pp. 209–224). CRC Press. https://doi.org/10.1201/9780203711651

Augustyniak, M., & Migula, P. (2000). [Chapter 16] Body burden with metals and detoxifying abilities of the grasshopper — Chorthippus brunneus (Thunberg) from industrially polluted areas. Trace Elements — Their Distribution and Effects in the Environment, 4, 423–454. https://doi.org/10.1016/s0927-5215(00)80019-3

Augustyniak, M., Orzechowska, H., Kędziorski, A., Sawczyn, T., & Doleżych, B. (2014). DNA damage in grasshoppers’ larvae – Comet assay in environmental approach. Chemosphere, 96, 180–187. https://doi.org/10.1016/j.chemosphere.2013.10.033

Barbehenn, R. V. (2002). Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. Journal of Chemical Ecology, 28(7), 1329–1347. https://doi.org/10.1023/a:1016288201110

Barbehenn, R. V. (2003). Antioxidants in grasshoppers: higher levels defend the midgut tissues of a polyphagous species than a graminivorous species. Journal of Chemical Ecology, 29(3), 683–702. https://doi.org/10.1023/a:1022824820855

Barbehenn, R. V., Bumgarner, S. L., Roosen, E. F., & Martin, M. M. (2001). Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. Journal of Insect Physiology, 47(4-5), 349–357. https://doi.org/10.1016/s0022-1910(00)00125-6erratum:47:1095

Benavides, M., Fernández-Lodeiro, J., Coelho, P., Lodeiro, C., & Diniz, M. S. (2016). Single and combined effects of Aluminum (Al2O3) and Zinc (ZnO) oxide nanoparticles in a freshwater fish, Carassius auratus. Environmental Science and Pollution Research, 23(24), 24578–24591. https://doi.org/10.1007/s11356-016-7915-3

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9–19. https://doi.org/10.1097/wox.0b013e3182439613

Birnbaum, S. S. L., Rinker, D. C., Gerardo, N. M., & Abbot, P. (2017). Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity. Molecular Ecology, 26(23), 6742–6761. https://doi.org/10.1111/mec.14401

Blengini, I. A. D., Cintra, M. A. M. de U., Cunha, R. P. P. da, & Caiafa, A. N. (Eds.). (2015). Proposta de Unidade de Conservação da Serra da Jiboia (p. 230). Grupo Ambientalista da Bahia (Gambá) / Universidade Federal do Recôncavo da Bahia (UFRB). http://www.gamba.org.br/wp-content/uploads/2016/03/Proposta-Final.pdf

Board, P. G., & Menon, D. (2013). Glutathione transferases, regulators of cellular metabolism and physiology. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(5), 3267–3288. https://doi.org/10.1016/j.bbagen.2012.11.019

Brahimi, D., Mesli, L., Rahmouni, A., Zeggai, F. Z., Khaldoun, B., Chebout, R., & Belbachir, M. (2020). Why Orthoptera fauna resist of pesticide? First experimental data of resistance phenomena. Data in Brief, 30, 105659. https://doi.org/10.1016/j.dib.2020.105659

Caiafa, A. N. (2015). A Vegetação na Serra da Jiboia. In I. A. D. Blengini, M. A. M. de U. Cintra, R. P. P. da Cunha, & A. N. Caiafa (Eds.), Proposta de Unidade de Conservação da Serra da Jiboia (pp. 72–83). Grupo Ambientalista da Bahia (Gambá).

Cigliano, M. M., Braun, H., Eades, D. C., & Otte, D. (1987, January 21). Homepage: Orthoptera Species File. Version 5.0/5.0. Orthoptera.speciesfile.org; Orthopterists’ Society. http://Orthoptera.SpeciesFile.org

Costa, M. K. M. da, Carvalho, G. S., & Fontanetti, C. S. (2010). Cladistic analysis of Abracrini genera (Orthoptera, Acrididae, Ommatolampinae). Zootaxa, 2451(1), 1–25. https://doi.org/10.11646/zootaxa.2451.1.1

Després, L., David, J.-P., & Gallet, C. (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution, 22(6), 298–307. https://doi.org/10.1016/j.tree.2007.02.010

Devkota, B., & Schmidt, G. H. (2000). Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agriculture, Ecosystems & Environment, 78(1), 85–91. https://doi.org/10.1016/s0167-8809(99)00110-3

Felton, G. W., Donato, K., Del Vecchio, R. J., & Duffey, S. S. (1989). Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. Journal of Chemical Ecology, 15(12), 2667–2694. https://doi.org/10.1007/bf01014725

Felton, G. W., & Summers, C. B. (1995). Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29(2), 187–197. https://doi.org/10.1002/arch.940290208

Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., & Wang, X. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Sciences, 75, 40–53. https://doi.org/10.1016/j.jes.2018.06.010

Hsu, M. J., Selvaraj, K., & Agoramoorthy, G. (2006). Taiwan’s industrial heavy metal pollution threatens terrestrial biota. Environmental Pollution, 143(2), 327–334. https://doi.org/10.1016/j.envpol.2005.11.023

Kafel, A., Rozpędek, K., Szulińska, E., Zawisza-Raszka, A., & Migula, P. (2014). The effects of cadmium or zinc multigenerational exposure on metal tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environmental Science and Pollution Research, 21(6), 4705–4715. https://doi.org/10.1007/s11356-013-2409-z

Keen, J. H., Habig, W. H., & Jakoby, W. B. (1976). Mechanism for the several activities of the Glutathione S-Transferases. The Journal of Biological Chemistry, 251(20), 6183–6188.

Lhano, M. G. (2021). Orthoptera. Catálogo Taxonômico da Fauna do Brasil (CTFB); PNUD. http://fauna.jbrj.gov.br/fauna/faunadobrasil/294

Lijun, L., Xuemei, L., Yaping, G., & Enbo, M. (2005). Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera Acridoidae). Environmental Toxicology and Pharmacology, 20(3), 412–416. https://doi.org/10.1016/j.etap.2005.04.001

Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101(1), 13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

Migula, P., Łaszczyca, P., Augustyniak, M., Wilczek, G., Rozpȩdek, K., Kafel, A., & Wołoszyn, M. (2004). Antioxidative defence enzymes in beetles from a metal pollution gradient. Biologia - Section Zoology, Bratislava, 59(5), 645–654.

Mittapalli, O., Neal, J. J., & Shukle, R. H. (2007). Antioxidant defense response in a galling insect. Proceedings of the National Academy of Sciences, 104(6), 1889–1894. https://doi.org/10.1073/pnas.0604722104

Mogren, C. L., & Trumble, J. T. (2010). The impacts of metals and metalloids on insect behavior. Entomologia Experimentalis et Applicata, 135(1), 1–17. https://doi.org/10.1111/j.1570-7458.2010.00967.x

Mota, T. A., Winkaler, E. U., Oliveira, G. de & Rocha, S. S. da. (2021). Enzymatic response of Macrobrachium jelskii (Miers, 1877) exposed to water from urban and rural rivers in Bahia, Brazil. Research, Society And Development, 10(6). https://doi.org/10.33448/rsd-v10i6.15638

Nwaubani, B. I., Amaeze, N. H., & Idowu, E. T. (2015). Heavy metal bioaccumulation and oxidative stress in Austroaeschna inermis (Dragon fly) of the Lagos Urban ecosystem. Journal of Environmental Chemistry and Ecotoxicology, 7(1), 11–19. https://doi.org/10.5897/jece2014.0336

Paital, B. (2018). Removing small non-enzymatic molecules for biochemical assay of redox regulatory enzymes; An exemplary comments on “Antioxidant responses in gills and digestive gland of oyster Crassostrea madrasensis (Preston) under lead exposure. Ecotoxicology and Environmental Safety, 154, 337–340. https://doi.org/10.1016/j.ecoenv.2018.01.051

Pavlidi, N., Vontas, J., & Van Leeuwen, T. (2018). The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science, 27, 97–102. https://doi.org/10.1016/j.cois.2018.04.007

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. [free e-book]. Santa Maria: RS. Ed. UAB/NTE/UFSM.

Pierezan, B., Webber, B., Vidmar, M. F., Martins, C. A. de Q., Almeida, C. R. de, & Siqueira, L. de O. (2017). Análise do perfil oxidativo de diferentes amostras biológicas de pacientes com lesão de ligamento cruzado anterior. Fisioterapia E Pesquisa, 24(2), 198–204. https://doi.org/10.1590/1809-2950/17409924022017

Roberts, H. R., & Carbonell, C. S. (1981). A revision of the Neotropical genus Abracris and related genera (Orthoptera, Acrididae, Ommatolampinae). Proceedings of the Academy of Natural Sciences of Philadelphia, 133, 1–14.

Rowell, C. H. F., & Behrstock, R. A. (2012). Additions to the acridoid grasshopper fauna of El Salvador. Journal of Orthoptera Research, 21(2), 235–243. https://doi.org/10.1665/034.021.0208

Roy, A., Walker, W. B., Vogel, H., Chattington, S., Larsson, M. C., Anderson, P., Heckel, D. G., & Schlyter, F. (2016). Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochemistry and Molecular Biology, 71, 91–105. https://doi.org/10.1016/j.ibmb.2016.02.006

Tangtrakulwanich, K., & Reddy, G. V. P. (2014). Development of insect resistance to plant biopesticides: an overview. In Advances in Plant Biopesticides (pp. 47–62). Springer. https://doi.org/10.1007/978-81-322-2006-0_4

Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178–189. https://doi.org/10.1016/j.ecoenv.2005.03.013

Wang, R.-L., Liu, S.-W., Baerson, S., Qin, Z., Ma, Z.-H., Su, Y.-J., & Zhang, J.-E. (2018). Identification and functional analysis of a novel cytochrome P450 gene CYP9A105 associated with pyrethroid detoxification in Spodoptera exigua Hübner. International Journal of Molecular Sciences, 19(3), 737. https://doi.org/10.3390/ijms19030737

Wang, Y., Huang, X., Chang, B. H., & Zhang, Z. (2020). Growth performance and enzymatic response of the grasshopper, Calliptamus abbreviatus (Orthoptera: Acrididae), to six plant-derived compounds. Journal of Insect Science, 20(3), 14. https://doi.org/10.1093/jisesa/ieaa049

Wang, Y., Oberley, L. W., & Murhammer, D. W. (2001). Antioxidant defense systems of two lipidopteran insect cell lines. Free Radical Biology and Medicine, 30(11), 1254–1262. https://doi.org/10.1016/s0891-5849(01)00520-2

Wilczek, G., Babczyńska, A., & Wilczek, P. (2013). Antioxidative responses in females and males of the spider Xerolycosa nemoralis (Lycosidae) exposed to natural and anthropogenic stressors. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 157(2), 119–131. https://doi.org/10.1016/j.cbpc.2012.10.005

Wilczek, G., Babczyńska, A., Wilczek, P., Doleżych, B., Migula, P., & Młyńska, H. (2008). Cellular stress reactions assessed by gender and species in spiders from areas variously polluted with heavy metals. Ecotoxicology and Environmental Safety, 70(1), 127–137. https://doi.org/10.1016/j.ecoenv.2007.03.005

Yousef, H. A., Abdelfattah, E. A., & Augustyniak, M. (2017). Evaluation of oxidative stress biomarkers in Aiolopus thalassinus (Orthoptera: Acrididae) collected from areas polluted by the fertilizer industry. Ecotoxicology, 26(3), 340–350. https://doi.org/10.1007/s10646-017-1767-6

Zaoralova, Z., Kupka, J., & Stalmachova, B. (2020). Orthoptera insects as bioaccumulators of potentially toxic elements (Ostrava city, Czech Republic). IOP Conference Series: Earth and Environmental Science, 444, 012057. https://doi.org/10.1088/1755-1315/444/1/012057

Zhang, Y., Sun, G., Yang, M., Wu, H., Zhang, J., Song, S., Ma, E., & Guo, Y. (2011). Chronic accumulation of cadmium and its effects on antioxidant enzymes and malondialdehyde in Oxya chinensis (Orthoptera: Acridoidea). Ecotoxicology and Environmental Safety, 74(5), 1355–1362. https://doi.org/10.1016/j.ecoenv.2011.03.002

Downloads

Publicado

2021-09-05

Edição

Seção

Ciências Agrárias e Biológicas

Como Citar

Atividade de biomarcadores bioquimicos em gafanhotos Abracris flavolineata (De Geer, 1773) (Orthoptera: Acrididae: Ommatolampidinae). Research, Society and Development, [S. l.], v. 10, n. 11, p. e409101119877, 2021. DOI: 10.33448/rsd-v10i11.19877. Disponível em: https://rsdjournal.org/rsd/article/view/19877. Acesso em: 5 dez. 2025.