Uma revisão narrativa sobre as metodologias usadas no estudo de turbulência noturna dentro e acima da floresta Amazônica obtidos através do sítio experimental Amazon Tall Tower Observatory
DOI:
https://doi.org/10.33448/rsd-v10i14.21912Palavras-chave:
ATTO, Floresta Amazônica, Turbulência noturna.Resumo
Este artigo tem o objetivo de documentar quais são as metodologias usadas nos estudos dos eventos turbulentos intermitentes de intensidade e periodicidade variáveis, que fornecem conexão episódica entre o dossel e a atmosfera e podem induzir comportamento oscilatório na camada limite noturna realizados especificamente no sítio experimental Amazon Tall Tower Observatory (ATTO) através de uma revisão narrativa de literatura dos principais artigos publicados durante o período de 2012 até 2021. Uma pesquisa bibliográfica foi realizada no banco de dados do projeto ATTO, onde esse banco de dados tem todas as publicações revisadas por pares em periódicos feitos neste projeto entre 2012 a 2021. Todos os artigos foram revisados, então a partir de 81 publicações no total apenas 3 artigos são categorizados como estudos sobre eventos turbulentos intermitentes na camada limite noturna. A partir disso, foi feita uma síntese das metodologias usadas nesses 3 artigos. Conclui-se, que se obteve dados de medidas diretas nas torres: direção e velocidade do vento, temperatura do ar, radiação líquida, precipitação, umidade do solo, fluxos de CO, CO2, O3, CH4 e CN. E assim foram calculados variâncias, fluxos de gases, número de Richardson (acima e dentro do dossel), calor sensível, calor latente, energia cinética turbulenta, velocidade horizontal média do vento e decomposição de multiresolução. A principal novidade do presente estudo foi essa análise como uma síntese das principais metodologias usadas sobre os diferentes fluxos escalares e suas escalas de tempo dentro e acima de um dossel da floresta Amazônica no sítio experimental ATTO à noite.
Referências
Acevedo, O. C., Costa, F. D., Oliveira, P. E. S., Puhales, F. S., Degrazia, G. A., & Roberti, D. R. (2014). The Influence of Submeso Processes on Stable Boundary Layer Similarity Relationships. Journal of the Atmospheric Sciences, 71(1), 207–225. https://doi.org/10.1175/JAS-D-13-0131.1
Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., … Yáñez-Serrano, A. M. (2015). The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 15(18), 10723–10776. https://doi.org/10.5194/acp-15-10723-2015
Aniversário dos marcos da ATTO. (2020, agosto 14). ATTO - Amazon Tall Tower Observatory. https://www.attoproject.org/pt/atto-celebrates-anniversary-of-milestones/
Betts, A. K., Fisch, G., von Randow, C., Silva Dias, M. A. F., Cohen, J. C. P., da Silva, R., & Fitzjarrald, D. R. (2009). The Amazonian boundary layer and mesoscale circulations. In M. Keller, M. Bustamante, J. Gash, & P. Silva Dias (Orgs.), Geophysical Monograph Series (Vol. 186, p. 163–181). American Geophysical Union. https://doi.org/10.1029/2008GM000725
Botía, S., Gerbig, C., Marshall, J., Lavric, J. V., Walter, D., Pöhlker, C., Holanda, B., Fisch, G., de Araújo, A. C., Sá, M. O., Teixeira, P. R., Resende, A. F., Dias-Junior, C. Q., van Asperen, H., Oliveira, P. S., Stefanello, M., & Acevedo, O. C. (2020). Understanding nighttime methane signals at the Amazon Tall Tower Observatory (ATTO). Atmospheric Chemistry and Physics, 20(11), 6583–6606. https://doi.org/10.5194/acp-20-6583-2020
Bosveld, F. C., Holtslag, A. A. M., & Van Den Hurk, B. J. J. M. (1999). Nighttime convection in the interior of a dense Douglas fir forest. Boundary-Layer Meteorology, 93(2), 171–195. https://doi.org/10.1023/A:1002039610790
Brown, A. R., & Wood, N. (2003). Properties and Parameterization of the Stable Boundary Layer over Moderate Topography. Journal of the Atmospheric Sciences, 60(22), 2797–2808. https://doi.org/10.1175/1520-0469(2003)060<2797:PAPOTS>2.0.CO;2
Campos, J. G., Acevedo, O. C., Tota, J., & Manzi, A. O. (2009). On the temporal scale of the turbulent exchange of carbon dioxide and energy above a tropical rain forest in Amazonia. Journal of Geophysical Research, 114(D8), D08124. https://doi.org/10.1029/2008JD011240
Carslaw, D. C., & Ropkins, K. (2012). openair—An R package for air quality data analysis. Environmental Modelling & Software, 27–28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008
Cava, D., Giostra, U., Siqueira, M., & Katul, G. (2004). Organised Motion and Radiative Perturbations in the Nocturnal Canopy Sublayer above an Even-Aged Pine Forest. Boundary-Layer Meteorology, 112(1), 129–157. https://doi.org/10.1023/B:BOUN.0000020160.28184.a0
Costa, F. D., Acevedo, O. C., Mombach, J. C. M., & Degrazia, G. A. (2011). A Simplified Model for Intermittent Turbulence in the Nocturnal Boundary Layer. Journal of the Atmospheric Sciences, 68(8), 1714–1729. https://doi.org/10.1175/2011JAS3655.1
Department Biogeochemical Processes | ATTO / Publications. ([s.d.]). https://www.bgc-jena.mpg.de/bgp/index.php/ATTO/Publications
Drüe, C., & Heinemann, G. (2007). Characteristics of intermittent turbulence in the upper stable boundary layer over Greenland. Boundary-Layer Meteorology, 124(3), 361–381. https://doi.org/10.1007/s10546-007-9175-8
Dupont, S., & Patton, E. G. (2012). Influence of stability and seasonal canopy changes on micrometeorology within and above an orchard canopy: The CHATS experiment. Agricultural and Forest Meteorology, 157, 11–29. https://doi.org/10.1016/j.agrformet.2012.01.011
Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa. Artes Médicas.
Fitzjarrald, D. R., & Moore, K. E. (1990). Mechanisms of nocturnal exchange between the rainforest and the atmosphere. Journal of Geophysical Research, 95(D10), 16839. https://doi.org/10.1029/JD095iD10p16839
Hoch, S. W., Calanca, P., Philipona, R., & Ohmura, A. (2007). Year-Round Observation of Longwave Radiative Flux Divergence in Greenland. Journal of Applied Meteorology and Climatology, 46(9), 1469–1479. https://doi.org/10.1175/JAM2542.1
Howell, J. F., & Mahrt, L. (1997). Multiresolution Flux Decomposition. Boundary-Layer Meteorology, 83(1), 117–137. https://doi.org/10.1023/A:1000210427798
Köche, J. C. (2016). Fundamentos de metodologia científica. Editora Vozes.
Mahrt, L. (1999). Stratified Atmospheric Boundary Layers. Boundary-Layer Meteorology, 90(3), 375–396. https://doi.org/10.1023/A:1001765727956
Mammarella, I., Kolari, P., Rinne, J., Keronen, P., Pumpanen, J., & Vesala, T. (2007). Determining the contribution of vertical advection to the net ecosystem exchange at Hyytiälä forest, Finland. Tellus B: Chemical and Physical Meteorology, 59(5), 900–909. https://doi.org/10.1111/j.1600-0889.2007.00306.x
Nappo, C. J.: An Introduction to Atmospheric Gravity Waves, Amsterdam, Academic Press, 276 pp., 2002.
Observatório de Torre Alta. ([s.d.]). ATTO - Amazon Tall Tower Observatory. Recuperado 24 de setembro de 2021, de https://www.attoproject.org/pt/por-atto/por-atto/
Oliveira, P. E. S., Acevedo, O. C., Moraes, O. L. L., Zimermann, H. R., & Teichrieb, C. (2013). Nocturnal Intermittent Coupling Between the Interior of a Pine Forest and the Air Above It. Boundary-Layer Meteorology, 146(1), 45–64. https://doi.org/10.1007/s10546-012-9756-z
Oliveira, P. E. S., Acevedo, O. C., Sörgel, M., Tsokankunku, A., Wolff, S., Araújo, A. C., Souza, R. A. F., Sá, M. O., Manzi, A. O., & Andreae, M. O. (2018). Nighttime wind and scalar variability within and above an Amazonian canopy. Atmospheric Chemistry and Physics, 18(5), 3083–3099. https://doi.org/10.5194/acp-18-3083-2018
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.
Ramos, F. M., Bolzan, M. J. A., Abreu Sá, L. D., & Rosa, R. R. (2004). Atmospheric turbulence within and above an Amazon forest. Physica D: Nonlinear Phenomena, 193(1–4), 278–291. https://doi.org/10.1016/j.physd.2004.01.026
Steeneveld, G. J., Holtslag, A. A. M., Nappo, C. J., van de Wiel, B. J. H., & Mahrt, L. (2008). Exploring the Possible Role of Small-Scale Terrain Drag on Stable Boundary Layers over Land. Journal of Applied Meteorology and Climatology, 47(10), 2518–2530. https://doi.org/10.1175/2008JAMC1816.1
Sun, J., Burns, S. P., Lenschow, D. H., Banta, R., Newsom, R., Coulter, R., Frasier, S., Ince, T., Nappo, C., Cuxart, J., Blumen, W., Lee, X., & Hu, X.-Z. (2002). Intermittent Turbulence Associated with a Density Current Passage in the Stable Boundary Layer. Boundary-Layer Meteorology, 105(2), 199–219. https://doi.org/10.1023/A:1019969131774
Sun, J., Lenschow, D. H., Burns, S. P., Banta, R. M., Newsom, R. K., Coulter, R., Frasier, S., Ince, T., Nappo, C., Balsley, B. B., Jensen, M., Mahrt, L., Miller, D., & Skelly, B. (2004). Atmospheric Disturbances that Generate Intermittent Turbulence in Nocturnal Boundary Layers. Boundary-Layer Meteorology, 110(2), 255–279. https://doi.org/10.1023/A:1026097926169
Sun, J., Mahrt, L., Banta, R. M., & Pichugina, Y. L. (2012). Turbulence Regimes and Turbulence Intermittency in the Stable Boundary Layer during CASES-99. Journal of the Atmospheric Sciences, 69(1), 338–351. https://doi.org/10.1175/JAS-D-11-082.1
van Gorsel, E., Harman, I. N., Finnigan, J. J., & Leuning, R. (2011). Decoupling of air flow above and in plant canopies and gravity waves affect micrometeorological estimates of net scalar exchange. Agricultural and Forest Meteorology, 151(7), 927–933. https://doi.org/10.1016/j.agrformet.2011.02.012
Vickers, D., & Mahrt, L. (2006). A Solution for Flux Contamination by Mesoscale Motions With Very Weak Turbulence. Boundary-Layer Meteorology, 118(3), 431–447. https://doi.org/10.1007/s10546-005-9003-y
Voronovich, V., & Kiely, G. (2007). On the gap in the spectra of surface-layer atmospheric turbulence. Boundary-Layer Meteorology, 122(1), 67–83. https://doi.org/10.1007/s10546-006-9108-y
Xu, X., Yi, C., & Kutter, E. (2015). Stably stratified canopy flow in complex terrain. Atmospheric Chemistry and Physics, 15(13), 7457–7470. https://doi.org/10.5194/acp-15-7457-2015
Zeri, M., Sá, L. D. A., Manzi, A. O., Araújo, A. C., Aguiar, R. G., von Randow, C., Sampaio, G., Cardoso, F. L., & Nobre, C. A. (2014). Variability of Carbon and Water Fluxes Following Climate Extremes over a Tropical Forest in Southwestern Amazonia. PLoS ONE, 9(2), e88130. https://doi.org/10.1371/journal.pone.0088130
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2021 Valkiria Andrade Costa

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
