Produção de hidrolisados de proteína de peixe a partir de aparas de filé de Oreochromis niloticus

Autores

DOI:

https://doi.org/10.33448/rsd-v11i6.29172

Palavras-chave:

Hidrólise enzimática, Otimização, Coprodutos de pescado, Proteína, Protease.

Resumo

A otimização de processos é essencial para a viabilidade em larga escala na indústria alimentícia. Aqui, aplicamos a metodologia de Delineamento Composto Central Rotacional (DCCR) seguido de análise de superfície de resposta para otimizar a produção de hidrolisado de proteína de peixe (HPP). O HPP foi obtido a partir de aparas de filé de tilápia submetidas ao processo de hidrólise utilizando as enzimas Alcalase 2.4L™, Neutrase™ e Novo-Pro™ D, sob condições controladas de temperatura, concentração de enzima e pH. Primeiramente, aplicamos um Planejamento Fatorial Fracionado (PFF) 23-3 para selecionar as variáveis mais influentes no processo com cada enzima a ser aplicada no DCCR. A partir do PFF, selecionamos temperatura e concentração de enzima para Alcalase 2.4L™ e Novo-Pro™ D, temperatura e pH para Neutrase™. O grau máximo estimado de hidrólise (GHmax) usando Alcalase 2.4L™ foi de 60,05% em 180 min de processo a 39,03°C e concentração de enzima de 0,65%. Neutrase™ atingiu GHmax de 56,96% durante 120 min a 39,46°C e pH 6,039, enquanto Novo-Pro™ D teve GHmax de 54,76% durante 60 min a 47,95°C e 0,866% de concentração de enzima. Assim, as três enzimas apresentaram resultados promissores para obtenção de HPP com alta GH a partir de aparas de filés de tilápia do Nilo

Referências

Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydro-lysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256–1262. doi: https://doi-org.ez109.periodicos.capes.gov.br/10.1021/jf60226a042.

Adler-Nissen, J. (1986). Enzymatic hydrolysis of food proteins. (1st. ed.). Elsevier Science Publishing Co.

Amiza, M. A., Liyana, H. A. & Zaliha, H. (2017). Optimization of enzymatic protein hydrolysis conditions to obtain maximum angiotensin-I-converting enzyme (ACE) inhibitory activity from Angel Wing Clam (Pholas orientalis) meat. Madridge Journal of Food Technology, 2(1), 65-73. doi: https://doi.org/10.18689/mjft-1000110

Amiza M. A. & Masitah M. (2012). Optimization of enzymatic hydrolysis of blood cockle (Anadara granosa) using Alcalase. Borneo Science, 31, 1-8.

Amiza, M. A., Nurul Ashikin, S. & Faazaz,A. L. (2011). Optimization of Enzymatic Protein Hydrolysis from Silver Catfish (Pangasius sp.) Frame. International Food Research Journal, 18(2), 775-781.

AOAC (2016). Official Methods of Analysis. (20 ed.). Rockville: AOAC Internacional.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento (2019). Manual de Métodos Oficiais para Análise de Alimentos de Origem Animal (2nd ed.). Brasília: MAPA.

Dey, S. S. & Dora, K. C. (2011). Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology. Journal of Food Science and Technology, 51(1), 16-24. doi: https://doi.org/10.1007/s13197-011-0455-4

Egerton, S., Culloty, S., Whooley, J., Stantone, C. & Ross, R. P. (2018). Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification. Food Chemistry, 245, 698–706. doi: https://doi.org/10.1016/j.foodchem.2017.10.107

Foh, M. B. K., Qixing, J., Amadou, I. & Xia, W. S. (2010). Influence of ultrafiltration on antioxidant activity of tilapia (Oreochromis niloticus) protain hydrolysate. Advance Journal of Food Science and Technology, 2(5), 227-235.

Fountoulakis, M. & Lahm, H. (1998). Hydrolysis and amino acid composition analysis of proteins. Journal of Chromatography A, 826, 109-134. doi: https://doi.org/10.1016/s0021-9673(98)00721-3

FAO (2020). The State of World Fisheries and Aquaculture (SOFIA). Rome: FAO.

Giannetto, A., Esposito, E., Lanza, M., Oliva, S., Riolo, K., Di Pietro, S., ... & Macrì, F. (2020). Protein hydrolysates from anchovy (Engraulis encrasicolus) waste: In vitro and in vivo biological activities. Marine drugs, 18(2), 86. doi: https://doi.org/10.3390/md18020086

He, S., Franco, C. & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). International Food Research Journal, 50 (1), 289–297.

Herath, S. S., Haga, Y. & Satoh, S. (2016). Effects of long-term feeding of corn co-product-based diets on growth, fillet color, and fatty acid and amino acid composition of Nilo tilapia, (Oreochromis niloticus). Aquaculture, 464, 205-212. doi: https://doi.org/10.1016/j.aquaculture.2016.06.032

Hoyle, N. & Merrit, J. H. (1994). Quality of fish protein hydrolysate from herring. Journal of Food Science, 1, 4769-4774.

Hsu, K. (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122, 42-48. doi: https://doi.org/10.1016/j.foodchem.2010.02.013

Ishak, N. & Sarbon, N. (2018). A Review of Protein Hydrolysates and Bioactive Peptides Deriving from Wastes Generated by Fish Processing. Food Bioprocess Technology, 11, 2-16. doi: https://doi.org/10.1007/s11947-017-1940-1

Jafarpour, A., Gregersen, S., Marciel Gomes, R., Marcatili, P., Hegelund Olsen, T., Jacobsen, C., ... & Sørensen, A. D. M. (2020). Biofunctionality of enzymatically derived peptides from codfish (gadus morhua) frame: Bulk in vitro properties, quantitative proteomics, and bioinformatic prediction. Marine drugs, 18(12), 599. doi: https://10.3390/md18120599

Joglekar, M. & May, T. (1987). Product excellence through design of experiments. Cereal Food World, 32, 857-868.

Kamnerdpetch, C., Weiss, M., Kasper, C. & Scheper, T. (2007). An improvement of potato pulp protein hydrolyzation process by the combination of protease enzyme systems. Enzyme and Microbial Technology, 40, 508-514. doi: https://10.1016/j.enzmictec.2006.05.006

Klomklao, S. & Benjakul, S. (2016). Utilization of tuna processing byproducts: protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera, Journal of Food Processing and Preservation, 41, e12970. doi: https://doi.org/10.1111/jfpp.12970

Kristinsson, H. G. & Rasco, B. A. (2010). Fish protein hydrolysates: production, biochemical, and functional properties, Critical Reviews in Food Science and Nutrition, 40(1), 43-81. doi: https://doi.org/10.1080/10408690091189266

Lenth, R. V. (2009). Response-Surface Methods in R, Using RSM. Journal of Statistical Software, 32(7), 1–17. doi: https://10.18637/jss.v032.i07

Liceaga-Gesualdo, A. M. & Li-Chan, E. C. Y. (1999). Functional properties of fish protein hydrolysate from herring (Clupea harengus). Journal of Food Science, 64, 1000-1004. doi: https://doi.org/10.1111/j.1365-2621.1999.tb12268.x

Lopes, A. L., Novelli, P. K., Fernandez-Lafuente, R., Tardioli, P. W. & Giordano, R. L. C. (2020). Glyoxyl-Activated Agarose as Support for Covalently Link Novo-Pro D: Biocatalysts Performance in the Hydrolysis of Casein. Catalysts, 10, 466. doi: https://doi.org/10.3390/catal10050466

Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, v. 193, 265-275.

Maluf, J. U., Fiorese, M. L., Maestre, K. L., Passos, F. R., Finkler, J. K., Fleck, J. F. & Borba, C. E. (2019). Optimization of the porcine liver enzymatic hydrolysis conditions. Journal of Food Process Engineering, 2020, e13370. doi: https://doi.org/10.1111/jfpe.13370

Messina, C. M., Manuguerra, S., Arena, R., Renda, G., Ficano, G., Randazzo, M., ... & Santulli, A. (2021). In Vitro Bioactivity of Astaxanthin and Peptides from Hydrolisates of Shrimp (Parapenaeus longirostris) By-Products: From the Extraction Process to Biological Effect Evaluation, as Pilot Actions for the Strategy “From Waste to Profit”. Marine Drugs, 19(4), 216. doi: https://doi.org/10.3390/md19040216

Mullen, A. M., Alvarez, C., Zeugolis, D. I., Neill, E. O. & Drummond, L. (2017). Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Science, 132, 90-98. doi: https://doi.org/10.1016/j.meatsci.2017.04.243

Nelson, D. L. & Cox, M. M. (2014). Princípios de bioquímica de Lehninger (6 ed.). Porto Alegre: Artmed.

Ngo, D., Qian, Z., Ryu, B., Park, J. W. & Kim, S. (2010). In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. Journal of Functional Foods, 2, 107-117. doi: https://doi.org/10.1016/j.jff.2010.02.001

Nollet, L. M. L & Toldra, F. (2011). Handbook of Analysis of Edible Animal By-Products. New York: CRC Press.

Ogawa, M. (1999). Alterações da carne de pescado por processamento e estocagem. In: Ogawa, M. & Maia, E. L. Manual de pesca – ciência e tecnologia do pescado (221-249). São Paulo: Varela.

Shen, Q., Guo, R., Dai, Z. & Zhang, Y. (2012). Investigation of Enzymatic Hydrolysis Conditions on the Properties of Protein Hydrolysate from Fish Muscle (Collichthys niveatus) and Evaluation of Its Functional Properties. Journal of Agricultural and Food Chemistry, 60, 5192-5198. doi: https://doi.org/10.1021 / jf205258f

R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/

Raghavan, S. & Kristinsson, H. G. (2008). Antioxidative efficacy of alkali-treated Tilapia protein hydrolysates: A comparative study of five enzymes. Journal of Agricultural and Food Chemistry, 56, 1434-1441. doi: https://doi.org/10.1021/jf0733160.

Roslan, J., Mustapa Kamal, S. M., Md. Yunos, K. F. & Abdullah, N. (2015). Optimization of enzymatic hydrolysis of tilapia (Oreochromis niloticus) byproduct using response surface methodology, International Food Research Journal, 22, 1117-1123.

Roslan, J., Kamal, S. M. M, Md. Yunos, K. F. & Abdullahb, N. (2014a). Optimization of Enzymatic Hydrolysis of Tilapia Muscle (Oreochromis niloticus) using Response Surface Methodology (RSM). Sains Malaysia, 43, 1715-1723.

Roslan, J., Md. Yunos, K. F., Abdullahb, N. & Kamal, S. M. M. (2014b). Characterization of Fish Protein Hydrolysate from Tilapia (Oreochromis niloticus) by-Product. Agriculture and Agricultural Science Procedia, 2, 312-319. doi: https://doi.org/10.1016/j.aaspro.2014.11.044

Silva, J. F. X., Ribeiro, J. F., Silva, J. S., Cahú, T. B. & Bezerra, R. S. (2014). Utilization of tilapia processing waste for the production of fish protein hydrolysate. Animal Feed Science and Technology, 196, 96-106. doi: https://doi.org/10.1016/j.anifeedsci.2014.06.010

Tavano, O. L. (2013). Protein hydrolysis using proteases: an important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90,1-11. doi: https://doi.org/10.1016/j.molcatb.2013.01.011

Toldrá, F., Mora, L. & Reig, M. (2016). New insights into meat by-product utilization. Meat Science, 120, 54-59. doi: https://doi.org/10.1016/j. meatsci.2016.04.021

Tkaczewska, J., Borawska-Dziadkiewicz, J., Kulawik, P., Duda, I., Morawska, M., & Mickowska, B. (2020). The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. Lwt, 117, 108616. doi: https://doi.org/10.1016/j.lwt.2019.108616

Ucak, I., Afreen, M., Montesano, D., Carrillo, C., Tomasevic, I., Simal-Gandara, J., & Barba, F. J. (2021). Functional and bioactive properties of peptides derived from marine side streams. Marine Drugs, 19(2), 71. doi: https://doi.org/10.3390/md19020071

Vázquez, J. A., Blanco, M., Massa, A. E., Amado, I. R. & Pérez-Martín, R. I. (2017). Production of Fish Protein Hydrolysates from Scyliorhinus canicula Discards with Antihypertensive and Antioxidant Activities by Enzymatic Hydrolysis and Mathematical Optimization Using Response Surface Methodology. Marine Drugs, 15, 306. doi: https://doi.org/10.3390/md15100306

Waglay, A. & Karboune, S. (2016). Enzymatic Generation of Peptides from Potato Proteins by Selected Proteases and Characterization of Their Structural Properties, Biotechnology Progress, (32)2, 420-9. doi: https://doi.org/10.1002/btpr.2245

Whitaker, J. R. & Dekker, M., (1994). Principles of Enzymology for the Food Sciences (2th ed.), New York: Marcel Dekker.

Wu, F., Jiang, M., Wen, H., Liu, W., Tian, J., Yang, C. & Huang, F. (2017). Dietary vitamin E effects on growth, fillet textural parameters, and antioxidant capacity of genetically improved farmed tilapia (GIFT), Oreochromis niloticus. Aquaculture International, 25, 991-1003. doi: https://doi.org/10.1007 / s10499-016-0089-7

Yarnpakdee S., Benjakul S., Kristinsson H. G. & Kishimura H. (2015). Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one-and two-step hydrolysis. Journal of Food Science and Technology, 6, 3336-3349. doi: https://doi.org/10.1007 / s13197-014-1394-7

Downloads

Publicado

2022-04-30

Edição

Seção

Ciências Agrárias e Biológicas

Como Citar

Produção de hidrolisados de proteína de peixe a partir de aparas de filé de Oreochromis niloticus . Research, Society and Development, [S. l.], v. 11, n. 6, p. e37311629172, 2022. DOI: 10.33448/rsd-v11i6.29172. Disponível em: https://rsdjournal.org/rsd/article/view/29172. Acesso em: 5 dez. 2025.