Enxertia em defeitos ósseos periimplantares por deposição polimérica in-situ através caneta 3D – estudo in vitro/ ex vivo

Autores

DOI:

https://doi.org/10.33448/rsd-v11i14.36234

Palavras-chave:

Bioimpressão, Biopolímeros, Impressão tridimensional, Polímeros.

Resumo

A Regeneração Óssea Guiada (ROG) objetiva o ganho ou a manutenção do volume ósseo, graças ao uso de membranas de barreira que atuam para tal finalidade. Esta pesquisa visa a enxertia de filamentos poliméricos em defeitos ósseos periimplantares pré-formados em côndilos suínos in vitro/ex vivo, estabilizados e enxertados com filamentos poliméricos poli(ácido lático) (PLA) e poli(álcool vinílico) (PVA), impressos in-situ com caneta de impressão 3D. Foram criados defeitos ósseos de 8 mm de diâmetro e 7 mm de profundidade em 9 côndilos suínos e instalados implantes cônicos de 3.5x10 mm. Após a formação da região de gap ósseo, acima da ancoragem óssea apical, os Corpos de prova (Cp) foram divididos conforme o preenchimento polimérico utilizado: G.Control – sem preenchimento no gap ósseo; G.PLA – arcabouço de PLA e G.PVA – arcabouço de PVA. Em outra etapa, foram comparadas as membranas de PVA e PLA 3D com a membrana de politetrafluoretileno denso (PTFE-d). Posteriormente os Cps foram analisados no microtomógrafo SkyScan 1172 (Bruker-μCT, Kontich, Bélgica). A análise correspondente à porosidade total não revelou diferença estatística entre G.Control (70,44%), G.PLA (59,99%) e G.PVA (57,66%). Já a porosidade fechada revelou diferença estatística entre G.Control (75.509%) e G.PVA (189,199%) e entre G.PVA e G.PLA (79.093%). Este estudo demostrou a possibilidade dos filamentos poliméricos de PVA e PLA preencherem os defeitos ósseos criados, revelando um contato íntimo sobre a superfície dos implantes utilizados. Os dados sugeriram uma maior porosidade do filamento de PVA quando aplicado em defeitos ósseos ou na forma de membrana.

Biografia do Autor

  • Alícia Fabro Moraes, Rio Grande University

     School of Dentistry – Rio Grande University/Duque de Caxias.

  • Ândrea Leite da Silva Lourençone, Rio Grande University

    School of Dentistry – Rio Grande University/Duque de Caxias.

  • Vivyan Cordeiro Goulart, Rio Grande University

    School of Dentistry – Rio Grande University/Duque de Caxias

  • Ellen dos Santos, Rio Grande University

    School of Dentistry – Rio Grande University/Duque de Caxias

  • Walas Cazzassa Vieira, Rio Grande University

    School of Dentistry – Rio Grande University/Duque de Caxias

  • Marcelo Ferreira da Silva, Rio Grande University

    Graduate Program in Dentistry – Rio Grande University/Duque de Caxias

Referências

Araujo, L. C., Dos Santos, Y. B. C., Leite, R. S., & Heggendorn, F. L. (2022). Extraction associated with L-PRF grafting and immediate installation - Case reports. Research, Society and Development, 11(3), e47211326563. doi.org/10.33448/rsd-v11i3.26563

Basa, B., Jakab, G., Kállai-Szabó, N., Borbás, B., Fülőp, V., Balogh, E., & Antal, I. (2021). Evaluation of biodegradale PVA-Based 3D Printed Carriers during Dissolution. Materials, 14(6), 1350. doi.org/10.3390/ma14061350

Calore, A. R., Srinivas, V., Anand, S., Abillos-sanches, A., Looijmans, S. F. S. P., Van Breemen, L. C. A., & Moroni, L. (2021). Shaping and properties of thermoplastic scaffolds in tissue regeneration: The efect of thermal history on polymer crystallization, surface characteristics and cell fate. Journal of Materials Research, 36(19), 3914-35.10.1557/s43578-021-00403-2

Consolaro, A., Carvalho, R. S., Francischone Jr, C. E., Consolaro, M. F. M. O., & Francishone, C. E. (2010). Saucerização de implantes osseointegrados e o planejamento de casos clínicos ortodônticos simultâneos. Dental Press J. Orthod, 15(3), 19-30. doi.org/10.1590/S2176-94512010000300003

Costa, V. C. F., Bianchi, C. M. P. C., Filho, A. C. G., Crepald, M. L. S., Oliveira, B. L. S., Aguiar, A. P., & Deps, T. D. (2021). Membranas utilizadas em regeneração óssea guiada (ROG): Características e indicações. Revista Faipe, 11(1), 48-57. https://www.revistafaipe.com.br/index.php/RFAIPE/article/view/230

De Oliveira, A. A. R., De Oliveira, J. E., Oréfice R. L., Mansur H. S., & Pereira M. M. (2007). Avaliação das propriedades mecânicas de espumas híbridas de vidro bioativo/álcool polivinílico para aplicação em engenharia de tecidos. Revista Matéria, 12(1), 140 – 149. doi.org/10.1590/S1517-70762007000100018

Herford, A. S., & Dean, J. S. (2011). Complications in bonegrafting. Oral Maxillo fac Surg Clin North Am., 23(3), 433-42. 10.1016/j.coms.2011.04.004.

Ho, S. T., & Hutmacher, D. W. (2006). A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials, 27(8), 1362-76. doi.org/10.1016/j.biomaterials.2005.08.035

Maia, M., Klein, E. S., Monje, T. V., & Paguosa, C. (2010). Reconstrução da estrutura facial por biomateriais: Revisão de literatura. Rev. Bras. Cir. Plást., 25(3), 566-72. doi.org/10.1590/S1983-51752010000300029

Mantovani Junior, M. (2006). Análise histológica de defeitos ósseos preenchidos com biomateriais e associados a implantes osseointegrados. Estudo em cães (Dissertação de mestrado). Universidade Estadual Paulista, Faculdade de Odontologia de Araraquara, São Paulo, SP, Brasil. http://hdl.handle.net/11449/96180

Maridati, P. C., Cremonesi, S., Fontana, F., Cicciù, M., & Maiorana, C. (2016). Management of d-PTFE Membrane Exposure for Having Final Clinical Success. Journal of Oral Implantology, 42(3), 289-91. 10.1563/aaid-joi-D-15-00074

Moncal, K. K., Gudapati, H., Godzik, K. P., Heo, D.N., Kang, Y., Rizk, E., & Ozbolat, I. T. (2021). Intra-Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillo facial Reconstruction. Atty. Funct. Specialization, 31, 1-15. doi: 10.1002/adfm.202010858

Okamoto, T., Perri, A. C. C., & Milanezi, L. A. (1973) Implante de poliuretano em alvéolos dentais. Estudos histológicos em ratos. Rev. Fac. Odontol. Aracatuba, 2(1), 19-25. <http://hdl.handle.net/11449/219029>.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Prado, F. A., Anbinder, A. L., Jaime, A. P., Lima, A. P., Balducci, I., & Rocha, R. F. (2006). Defeitos ósseos em tíbia de ratos: padronização do modelo experimental. Rev. odontol. Univ. Cid. Sao Paulo, 18(1), 7-13.

Prasadh, S., Suresh, S., & Wong, R. (2018). Osteogenic of Graphene in bone tissue engineering scaffolds. Materials, 11(8), 1430. doi.org/10.3390/ma11081430

Rakhmatia, Y. D., Ayukawa, Y., Furuhashi, A., & Koyano, K. (2013). Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodontic Res., 57(1), 3-14. 10.1016/j.jpor.2012.12.001.

Santana. L., Alves, J. L., Netto, A. C. S., & Merlini, C. (2018). Estudo comparativo entre PEGT e PLA para impressão 3D através de caracterização térmica, química e mecânica. Revista Matéria, 23(4), e-12267. doi.org/10.1590/S1517-707620180004.0601

Sanz, M., Dahin, C., Apatzidou, D., Artzi, Z., Bozic, D., Calciolari, E., & Schliephake, H. (2019). Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region.: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol, 46(21): 82-91, 2019. 10.1111/jcpe.13123

Wang Y., Gao, M., Wang, D., Sun, L., & Webster, T. J. (2020). Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing. International Journal of Nanomedicine, 15, 215–226.

Warrer, K., Karring, T., & Gotfredsen, K. (1993). Formação do ligamento periodontal em torno de diferentes tipos de implantes dentários de titânio. I. O sistema de implante tipo parafuso auto-roscante. Revista de Periodontologia, 64(1), 29-34. doi.org/10.1902/jop.1993.64.1.29

Downloads

Publicado

2022-10-27

Edição

Seção

Ciências da Saúde

Como Citar

Enxertia em defeitos ósseos periimplantares por deposição polimérica in-situ através caneta 3D – estudo in vitro/ ex vivo. Research, Society and Development, [S. l.], v. 11, n. 14, p. e301111436234, 2022. DOI: 10.33448/rsd-v11i14.36234. Disponível em: https://rsdjournal.org/rsd/article/view/36234. Acesso em: 5 dez. 2025.