Toxoplasma gondii: Aspectos celulares do parasita

Autores

DOI:

https://doi.org/10.33448/rsd-v14i1.48052

Palavras-chave:

Toxoplasmose, Patogênese, Caracterização molecular, Resposta imunológica.

Resumo

Objetivo: O Toxoplasma gondii é um protozoário intracelular obrigatório de significativa preocupação veterinária e médica, pois causa toxoplasmose, uma doença facilmente transmissível e que se apresenta em várias formas infecciosas. Esta revisão tem como objetivo explorar as complexidades da transmissão e patogênese de T. gondii, bem como os desafios no desenvolvimento de vacinas eficazes. Metodologia: Para a produção do artigo, foi realizada uma revisão bibliográfica com base em livros e artigos experimentais por meio de buscas no Google, bases de dados acadêmicas e PubMed. Impacto: A toxoplasmose continua sendo um problema veterinário e de saúde pública generalizado, particularmente em indivíduos imunocomprometidos, onde a doença pode levar a resultados mais graves. Destacamos a análise abrangente do ciclo de vida de T. gondii, rotas de transmissão e mecanismos de infecção do hospedeiro. A revisão enfoca a capacidade do parasita de invadir células nucleadas no hospedeiro intermediário, como macrófagos, células epiteliais e células neurais e musculares, levando à formação de cistos que contribuem para a infecção crônica. Apesar de inúmeros estudos sobre o parasita, a falta de uma vacina eficaz continua a dificultar o progresso na prevenção e controle da doença. Descobertas e contribuições únicas: Esta revisão destaca os mecanismos sofisticados pelos quais T. gondii infecta as células hospedeiras e a cronicidade da doença por meio da formação de cistos. Ele enfatiza a lacuna contínua no desenvolvimento de vacinas, ressaltando a necessidade urgente de abordagens inovadoras para o design de vacinas. O estudo oferece uma perspectiva crítica sobre a compreensão atual da biologia do T. gondii e os desafios na criação de imunidade duradoura contra a toxoplasmose, tornando-se uma contribuição valiosa para o campo.

Referências

Abrantes, M. M. (1999). Primary toxoplasmosis during pregnancy. Rev. med. Minas Gerais, 114-116.

Abreu Guimarães, L. F., Azevedo, A. B., Sousa, C. C. T., Miodownik, F. G., Basto, S. T., Santos, U. C., & Fernandes, E. D. S. M. (2022). Infecção primária por Toxoplasma gondii com acometimento do sistema nervoso central em receptor de transplante hepático. The Brazilian Journal of Infectious Diseases, 26, 102213. https://doi.org/10.1016/j.bjid.2021.102213

Ahmadpour, E., Babaie, F., Kazemi, T., Mehrani Moghaddam, S., Moghimi, A., Hosseinzadeh, R., Nissapatorn, V., & Pagheh, A. S. (2023). Overview of Apoptosis, Autophagy, and Inflammatory Processes in Toxoplasma gondii Infected Cells. Pathogens (Basel, Switzerland), 12(2), 253. https://doi.org/10.3390/pathogens12020253

Alexander, D. L., Mital, J., Ward, G. E., Bradley, P., & Boothroyd, J. C. (2005). Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS pathogens, 1(2), e17. https://doi.org/10.1371/journal.ppat.0010017

Anima. (2014). Manual revisão bibliográfica sistemática integrativa: a pesquisa baseada em evidências. Grupo Anima. https://biblioteca.cofen.gov.br/wp-content/uploads/2019/06/manual_revisao_bibliografica-sistematica-integrativa.pdf.

Appleford, P. J., & Smith, J. E. (2000). Strain and stage specific variation in Toxoplasma gondii antigens. International journal for parasitology, 30(11), 1187–1191. https://doi.org/10.1016/s0020-7519(00)00109-0

Araújo, C. C. A. (2023). Epidemiological data collection of Toxoplasma gondii in the municipality of Parintins – AM. Advisor: Prof. Dr. Marcos Vinicius de Castro Ferraz Junior. 2023. 40. Course Completion Paper- animal science, Federal University of Amazonas, Parintins. https://www.riu.ufam.edu.br/handle/prefix/7363.

Artigas, R. S. (2020). Toxoplasma gondii. Parasite intracecular obligado. In: Artigas, Rolando Sánchez; Maggi, Maria Angélic Barba; Campi, Yisela Ramos; Peña, Edgar Brossard; Valdes, Dailin Cobos; Cruz, Liana Sánchez. Un lenguaje claro sobre toxoplasmosis. Riobamba. 28-43.

Attias, M., Teixeira, D. E., Benchimol, M., Vommaro, R. C., Crepaldi, P. H., & Souza, W. (2020). The life-cycle of Toxoplasma gondii reviewed using animations. Parasites & vectors, 13(1), 588. https://doi.org/10.1186/s13071-020-04445-z

Attias, M.; Vommaro, R. C.; Souza, W. The structural organization of Toxoplasma gondii. In: Souza, W.; Belfort Jr., R. Toxoplasmosis & Toxoplasma gondii. Rio de Janeiro: Editora Fiocruz, 2014. p. 47-60. https://doi.org/10.7476/9788575415719

Azevedo, D. S., Jamra, L. M., & Ribeiro, M.deF. (1983). Isolamento de oocistos de Toxoplasma gondii em dois bairros de Recife (PE) [Isolation of Toxoplasma gondii oocysts in 2 districts of Recife (PE)]. Revista do Instituto de Medicina Tropical de Sao Paulo, 25(1), 31–36.

Bahia, M. D., & Oréfice, F. (1993). Clinical Aspects of Retinochoroiditis Lesions in Children with Congenital Toxoplasmosis. In Recent Advances in Uveitis: Proceedings of the Third International Symposium on Uveitis, Brussels, Belgium. (203) 24-27.

Barbosa, H. S., Muno, R. M., Moura, M. A. (2014). The Evolutionary Cycle. In: Souza, W.; Belfort J. R. Toxoplasmosis & Toxoplasma gondii. Rio de Janeiro: Editora Fiocruz, 33-45. https://doi.org/10.7476/9788575415719

Batista, M. L., Jr, Lopes, R. D., Seelaender, M. C., & Lopes, A. C. (2009). Anti-inflammatory effect of physical training in heart failure: role of TNF-alpha and IL-10. Arquivos brasileiros de cardiologia, 93(6), 643–700. https://doi.org/10.1590/S0066-782X2009001200021

Battaglini, V. F. (2023). Canine toxoplasmosis: a review. Advisor: Profa. Dr. Maria Lucia G. Lourenço. 2023. 20. Course Completion Work - Veterinary Medicine, Júlio de Mesquita Filho, Botucatu, 2023. https://repositorio.unesp.br/server/api/core/bitstreams/0811e205-e3d1-4c5a-a8a4-258acf4c855f/content.

Beckers, C. J., Dubremetz, J. F., Mercereau-Puijalon, O., & Joiner, K. A. (1994). The Toxoplasma gondii rhoptry protein ROP 2 is inserted into the parasitophorous vacuole membrane, surrounding the intracellular parasite, and is exposed to the host cell cytoplasm. The Journal of cell biology, 127(4), 947–961. https://doi.org/10.1083/jcb.127.4.947

Bichara, C. C., De Andrade, G. M. Q., Lago, E. G. (2014). Congenital toxoplasmosis. In: Souza, W., Belfort Jr., R. Toxoplasmosis & Toxoplasma gondii. Rio de Janeiro: Editora Fiocruz, 2014. p. 137-155. https://doi.org/10.7476/9788575415719

Boothroyd, J. C., & Dubremetz, J. F. (2008). Kiss and spit: the dual roles of Toxoplasma rhoptries. Nature Reviews Microbiology, 6(1), 79-88. https://doi.org/10.1038/nrmicro1800

Briceno, M. P. P. (2023). Histological and molecular analyses of the intestinal epithelium of C57BL/6 mice orally infected with 10 or 20 Toxoplasma gondii cysts. https://repositorio.ufu.br/bitstream/123456789/37557/1/An%C3%A1lisesHistol%C3%B3gicasMoleculares.pdf.

Cardoso, R. A. D. A., Guimarães, F. N., & Garcia, A. P. (1956). Toxoplasmose congênita. Memórias do Instituto Oswaldo Cruz, 54, 571-586. https://doi.org/10.1590/S0074-02761956000300008

Carter, A. O., & Frank, J. W. (1986). Congenital toxoplasmosis: epidemiologic features and control. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne, 135(6), 618–623.

Chaves, A. C., Cerávolo, I. P., Gomes, J. A., Zani, C. L., Romanha, A. J., & Gazzinelli, R. T. (2001). IL-4 and IL-13 regulate the induction of indoleamine 2,3-dioxygenase activity and the control of Toxoplasma gondii replication in human fibroblasts activated with IFN-gamma. European journal of immunology, 31(2), 333–344. https://doi.org/10.1002/1521-4141(200102)31:2<333::aid-immu333>3.0.co;2-x

Chiari, C. A., & Neves, D. P. (1984). Toxoplasmose humana adquirida através da ingestão de leite de cabra [Human toxoplasmosis acquired by ingestion of goat's milk]. Memorias do Instituto Oswaldo Cruz, 79(3), 337–340. https://doi.org/10.1590/s0074-02761984000300007

Cohen G. M. (1997). Caspases: the executioners of apoptosis. The Biochemical journal, 326, 1–16. https://doi.org/10.1042/bj3260001

Cook, A. J., Gilbert, R. E., Buffolano, W., Zufferey, J., Petersen, E., Jenum, P. A., Foulon, W., Semprini, A. E., & Dunn, D. T. (2000). Sources of toxoplasma infection in pregnant women: European multicentre case-control study. European Research Network on Congenital Toxoplasmosis. BMJ (Clinical research ed.), 321(7254), 142–147. https://doi.org/10.1136/bmj.321.7254.142

Crossetti, M. G. M. (2012). Revisión integradora de la investigación en enfermería el rigor científico que se le exige. Rev. Gaúcha Enferm. 33(2): 8-9.

Daher, D., Shaghlil, A., Sobh, E., Hamie, M., Hassan, M. E., Moumneh, M. B., Itani, S., El Hajj, R., Tawk, L., El Sabban, M., & El Hajj, H. (2021). Comprehensive Overview of Toxoplasma gondii-Induced and Associated Diseases. Pathogens (Basel, Switzerland), 10(11), 1351. https://doi.org/10.3390/pathogens10111351

Deckert-Schlüter, M., Albrecht, S., Hof, H., Wiestler, O. D., & Schlüter, D. (1995). Dynamics of the intracerebral and splenic cytokine mRNA production in Toxoplasma gondii-resistant and -susceptible congenic strains of mice. Immunology, 85(3), 408–418.

Desmonts, G., & Couvreur, J. (1984). Toxoplasmose congénitale. Etude prospective de l'issue de la grossesse chez 542 femmes atteintes de toxoplasmose acquise en cours de gestation [Congenital toxoplasmosis. Prospective study of the outcome of pregnancy in 542 women with toxoplasmosis acquired during pregnancy]. Annales de pediatrie, 31(10), 805–809.

Duarte, M. I. S., de Andrade, H. F., Takamura, C. F. H., Sesso, A., & Tuon, F. F. (2009). TGF-beta and mesenchymal hepatic involvement after visceral leishmaniasis. Parasitology research, 104, 1129-1136. https://doi.org/10.1007/s00436-008-1298-4

Dubey, J. P. (2007). The history and life cycle of Toxoplasma gondii, Toxoplasma gondii: the model apicomplexan parasite: perspectives and methods. Elsevier, London, United Kingdom, 1–18. https://doi.org/10.1016/B978-0-12-396481-6.00001-5

Dubey, J. P., Lindsay, D. S., & Speer, C. A. (1998). Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical microbiology reviews, 11(2), 267–299. https://doi.org/10.1128/CMR.11.2.267

Dubey, J. P., Murrell, K. D., Fayer, R., & Schad, G. A. (1986). Distribution of Toxoplasma gondii tissue cysts in commercial cuts of pork. Journal of the American Veterinary Medical Association, 188(9), 1035–1037.

Dubey, J. P.; Beattie, C.P. (1988). Toxoplasmosis in Humans (Homo sapiens). In: Dubey, J. P.; Beattie, C.P. Toxoplasmosis of animals and humans. Beltsville: CRC Press Taylor & Francis Group, 73-93. https://doi.org/10.1201/9781420092370

Ducournau, C., Moiré, N., Carpentier, R., Cantin, P., Herkt, C., Lantier, I., Betbeder, D., & Dimier-Poisson, I. (2020). Effective Nanoparticle-Based Nasal Vaccine Against Latent and Congenital Toxoplasmosis in Sheep. Frontiers in immunology, 11, 2183. https://doi.org/10.3389/fimmu.2020.02183

El Kasmi, K. C., Qualls, J. E., Pesce, J. T., Smith, A. M., Thompson, R. W., Henao-Tamayo, M., Basaraba, R. J., König, T., Schleicher, U., Koo, M. S., Kaplan, G., Fitzgerald, K. A., Tuomanen, E. I., Orme, I. M., Kanneganti, T. D., Bogdan, C., Wynn, T. A., & Murray, P. J. (2008). Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nature immunology, 9(12), 1399–1406. https://doi.org/10.1038/ni.1671

Endo, T., Sethi, K. K., & Piekarski, G. (1982). Toxoplasma gondii: calcium ionophore A23187-mediated exit of trophozoites from infected murine macrophages. Experimental parasitology, 53(2), 179–188. https://doi.org/10.1016/0014-4894(82)90059-5

Esteves, M. F. (2022). To establish cultures of gut organoids as a model to study the expression of genes of the sexual phase of Toxoplasma gondii. Advisor: Dr. Dulce Maria Metelo Fernandes dos Santos. Dissertation-Molecular Technologies in Health, Polytechnic Institute of Lisbon. http://hdl.handle.net/10400.21/15023>. Accessed on: 05 May. 2024.

Falcão, C. D. M. M. B., Sousa, A. M. A., de Moura, W. L., & Batista, L. I. V. (2021). Clinical and epidemiological profile of children with congenital toxoplasmosis in a reference perinatology institute. Research, Society and Development, 10(17), e81101724524-e81101724524.

Fayer, R., Dubey, J. P., & Lindsay, D. S. (2004). Zoonotic protozoa: from land to sea. Trends in parasitology, 20(11), 531–536. https://doi.org/10.1016/j.pt.2004.08.008

Feitosa, T. F., Brasil, A. W. D. L., Parentoni, R. N., Vilela, V. L. R., Nety, T. F. L., & Pena, H. F. D. J. (2018). Anti-Toxoplasma gondii antibodies in mammals, birds and reptiles at the zoological-botanical park in João Pessoa, Paraíba, Brazil. Arquivos do Instituto Biológico, 84. https://doi.org/10.1590/1808-1657000022016

Fentress, S. J., Behnke, M. S., Dunay, I. R., Mashayekhi, M., Rommereim, L. M., Fox, B. A., Bzik, D. J., Taylor, G. A., Turk, B. E., Lichti, C. F., Townsend, R. R., Qiu, W., Hui, R., Beatty, W. L., & Sibley, L. D. (2010). Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell host & microbe, 8(6), 484–495. https://doi.org/10.1016/j.chom.2010.11.005

Ferguson D. J. (2009). Toxoplasma gondii: 1908-2008, homage to Nicolle, Manceaux and Splendore. Memorias do Instituto Oswaldo Cruz, 104(2), 133–148. https://doi.org/10.1590/s0074-02762009000200003

Frenkel, J. K. (1973). Toxoplasma in and around us. Bioscience, 23(6), 343-352. https://doi.org/10.2307/1296513

Frenkel, J. K., Dubey, J. P., & Miller, N. L. (1970). Toxoplasma gondii in cats: fecal stages identified as coccidian oocysts. Science (New York, N.Y.), 167(3919), 893–896. https://doi.org/10.1126/science.167.3919.893

Gaddi, P. J., & Yap, G. S. (2007). Cytokine regulation of immunopathology in toxoplasmosis. Immunology and cell biology, 85(2), 155–159. https://doi.org/10.1038/sj.icb.7100038

Garcia-Réguet, N., Lebrun, M., Fourmaux, M. N., Mercereau-Puijalon, O., Mann, T., Beckers, C. J., Samyn, B., Van Beeumen, J., Bout, D., & Dubremetz, J. F. (2000). The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite. Cellular microbiology, 2(4), 353–364. https://doi.org/10.1046/j.1462-5822.2000.00064.x

Gazzinelli, R. T., Wysocka, M., Hayashi, S., Denkers, E. Y., Hieny, S., Caspar, P., Trinchieri, G., & Sher, A. (1994). Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. Journal of immunology (Baltimore, Md. : 1950), 153(6), 2533–2543. https://doi.org/10.4049/jimmunol.153.6.2533

Girdwood R. W. (1989). 'Protozoan' infections in the immunocompromised patient--the parasites and their diagnosis. Journal of medical microbiology, 30(1), 3–16. https://doi.org/10.1099/00222615-30-1-3

Guirelli, P. M. (2014). The influence of Toxoplasma gondii infection on the communication between human extravillous trophoblastic cells and macrophages. Advisor: Profa. Dr. Eloisa Amália Vieira Ferro. Dissertation - Immunology and Parasitology, Federal University of Uberlândia, Uberlândia. Available at: <https://repositorio.ufu.br/bitstream/123456789/16709/1/InfluenciaInfeccaoToxoplasma.pdf>. Accessed on: 05 May. 2024.

Hakimi, M. A., Olias, P., & Sibley, L. D. (2017). Toxoplasma Effectors Targeting Host Signaling and Transcription. Clinical microbiology reviews, 30(3), 615–645. https://doi.org/10.1128/CMR.00005-17

Heussler, V. T., Küenzi, P., & Rottenberg, S. (2001). Inhibition of apoptosis by intracellular protozoan parasites. International journal for parasitology, 31(11), 1166–1176. https://doi.org/10.1016/s0020-7519(01)00271-5

Hiromoto, R. M. (1998). Efeitos da radiação ionizante sobre a estrutura, metabolismo e infecciosidade de um protozoario patogênico, Toxoplasma gondii (Nicolle and Manceaux, 1908) (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. https://repositorio.usp.br/item/001007802.

Howe, D. K., & Sibley, L. D. (1995). Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. The Journal of infectious diseases, 172(6), 1561–1566. https://doi.org/10.1093/infdis/172.6.1561

Howe, D. K., Summers, B. C., & Sibley, L. D. (1996). Acute virulence in mice is associated with markers on chromosome VIII in Toxoplasma gondii. Infection and immunity, 64(12), 5193–5198. https://doi.org/10.1128/iai.64.12.5193-5198.1996

Hsieh, C. S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., O'Garra, A., & Murphy, K. M. (1993). Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science (New York, N.Y.), 260(5107), 547–549. https://doi.org/10.1126/science.8097338

Hunter, C. A., & Sibley, L. D. (2012). Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nature reviews Microbiology, 10(11), 766–778. https://doi.org/10.1038/nrmicro2858

Jacobs, L. (1974). Toxoplasma gondii: parasitology and transmission. Bulletin of the New York Academy of Medicine, 50(2), 128.

Jacobs, L., Remington, J. S., & Melton, M. L. (1960). The Resistance of the Encysted Form of Toxoplasma gondii. The Journal of Parasitology, 46(1), 11–21. https://doi.org/10.2307/3275325

Jewett, T. J., & Sibley, L. D. (2003). Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Molecular cell, 11(4), 885–894. https://doi.org/10.1016/s1097-2765(03)00113-8

Jones, T. C., Yeh, S., & Hirsch, J. G. (1972). The interaction between Toxoplasma gondii and mammalian cells. I. Mechanism of entry and intracellular fate of the parasite. The Journal of experimental medicine, 136(5), 1157–1172. https://doi.org/10.1084/jem.136.5.1157

Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer, 26(4), 239–257. https://doi.org/10.1038/bjc.1972.33

Khan, I. A., Green, W. R., Kasper, L. H., Green, K. A., & Schwartzman, J. D. (1999). Immune CD8(+) T cells prevent reactivation of Toxoplasma gondii infection in the immunocompromised host. Infection and immunity, 67(11), 5869–5876. https://doi.org/10.1128/IAI.67.11.5869-5876.1999

Kim, K., & Weiss, L. M. (2008). Toxoplasma: the next 100years. Microbes and infection, 10(9), 978–984. https://doi.org/10.1016/j.micinf.2008.07.015

Köhler, S. (2005). Multi-membrane-bound structures of Apicomplexa: I. the architecture of the Toxoplasma gondii apicoplast. Parasitology research, 96, 258-272. https://doi.org/10.1007/s00436-005-1338-2

uggla, S., Delwiche, C. F., Denny, P. W., Tilney, L. G., Webster, P., Wilson, R. J. M., Palmer, J. D., & Roos, D. S. (1997). A plastid of probable green algal origin in Apicomplexan parasites. Science, 275(5305), 1485-1489. https://doi.org/10.1126/science.275.5305.1485

Krishnan, A., & Soldati-Favre, D. (2021). Amino Acid Metabolism in Apicomplexan Parasites. Metabolites, 11(2), 61. https://doi.org/10.3390/metabo11020061

Lingelbach, K., & Joiner, K. A. (1998). The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. Journal of cell science, 111 (Pt 11), 1467–1475. https://doi.org/10.1242/jcs.111.11.1467

Lu, F., Huang, S., & Kasper, L. H. (2003). Interleukin-10 and pathogenesis of murine ocular toxoplasmosis. Infection and immunity, 71(12), 7159–7163. https://doi.org/10.1128/IAI.71.12.7159-7163.2003

Luchs, A., & Pantaleão, C. (2010). Apoptosis and in vivo models to study the molecules related to this phenomenon. Einstein (Sao Paulo, Brazil), 8(4), 495–497. https://doi.org/10.1590/S1679-45082010RB1685

Lüder, C. G., & Gross, U. (2005). Apoptosis and its modulation during infection with Toxoplasma gondii: molecular mechanisms and role in pathogenesis. Current topics in microbiology and immunology, 289, 219–237. https://doi.org/10.1007/3-540-27320-4_10

Lyons, R. E., McLeod, R., & Roberts, C. W. (2002). Toxoplasma gondii tachyzoite-bradyzoite interconversion. Trends in parasitology, 18(5), 198–201. https://doi.org/10.1016/s1471-4922(02)02248-1

Magno, R. C., Lemgruber, L., Vommaro, R. C., Souza, W., & Attias, M. (2005). Intravacuolar network may act as a mechanical support for Toxoplasma gondii inside the parasitophorous vacuole. Microscopy research and technique, 67(1), 45–52. https://doi.org/10.1002/jemt.20182

Marino, A. M. F., Giunta, R. P., Salvaggio, A., Castello, A., Alfonzetti, T., Barbagallo, A., Aparo, A., Scalzo, F., Reale, S., Buffolano, W., & Percipalle, M. (2019). Toxoplasma gondii in edible fishes captured in the Mediterranean basin. Zoonoses and public health, 66(7), 826–834. https://doi.org/10.1111/zph.12630

Martins, M. C., Silveira, C. M., Jamra, L. F., Barros, P. M., Belfort, R., Rigueiro, M. P., & Neves, R. A. (1990). Isolation of Toxoplasma gondii from meat and sausages from endemic region of ocular toxoplasmosis-Erechim-RS. Arquivos Brasileiros de Oftalmologia, 53, 60-66. https://doi.org/10.5935/0004-2749.19900037

Mattos, P. C. (2015). Tipos de revisão de literatura. Unesp, 1-9. https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.pdf.

Mayer, G. C. P. (1998). Cytokines and immunoregulation. In: Bowers, Willian; Ghaffar, Abdur; Mayer, Gene; Immunology. South Carolina: Richard Hunt. 1-19.

Michel, R., Schupp, K., Raether, W., & Bierther, F. W. (1980). Formation of a close junction during invasion of erythrocytes by Toxoplasma gondii in vitro. International journal for parasitology, 10(4), 309–313. https://doi.org/10.1016/0020-7519(80)90012-0

Mondragon, R., & Frixione, E. (1996). Ca(2+)-dependence of conoid extrusion in Toxoplasma gondii tachyzoites. The Journal of eukaryotic microbiology, 43(2), 120–127. https://doi.org/10.1111/j.1550-7408.1996.tb04491.x

Mordue, D. G., Håkansson, S., Niesman, I., & Sibley, L. D. (1999). Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Experimental parasitology, 92(2), 87–99. https://doi.org/10.1006/expr.1999.4412

Mussi-Pinhata, M. M., & Yamamoto, A. Y. (1999). Infecções congênitas e perinatais [Congenital and perinatal infections]. Jornal de pediatria, 75 Suppl 1, S15–S30. https://doi.org/10.2223/jped.368

Nash, P. B., Purner, M. B., Leon, R. P., Clarke, P., Duke, R. C., & Curiel, T. J. (1998). Toxoplasma gondii-infected cells are resistant to multiple inducers of apoptosis. Journal of immunology (Baltimore, Md.:1950), 160(4), 1824–1830.

Nicolle, C. (1908). Sur une infection a corps de Leishman (on organismes voisons) du gondi. CR Hebd Seances Acad Sci, 147, 736-766.

Nishi, M., Hu, K., Murray, J. M., & Roos, D. S. (2008). Organellar dynamics during the cell cycle of Toxoplasma gondii. Journal of cell science, 121(9), 1559-1568. https://doi.org/10.1242/jcs.021089

Oliveira, A. R. S. (2013). Evaluation of animal owners' knowledge about toxoplasmosis. Advisor: Doctor Berta Maria Fernandes Ferreira São Braz. Dissertation - Veterinary Medicine, University of Lisbon, Lisbon. https://www.repository.utl.pt/handle/10400.5/6179.

Oliveira, D. C. (2017). Evaluation of the control of gene expression of pro-inflammatory cytokines mediated by IL-10. Participation of IL-10 in the modulation of the inflammatory response exerted by glutamine and in dietary restriction. Advisor: Prof. Dr. Ricardo Ambrósio Fock. Thesis - Pathophysiology, University of São Paulo, São Paulo. https://www.teses.usp.br/teses/disponiveis/9/9142/tde-16112017-174159/publico/Dalila_Cunha_de_Oliveira_DO_Corrigida.pdf.

Paraense, W. L. (1948). A ausencia de ação terapeutica da" Paludrine" na toxoplasmose experimental. Memórias do Instituto Oswaldo Cruz, 46, 639-645. https://doi.org/10.1590/S0074-02761948000300008

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.

Radke, J. B., Lucas, O., De Silva, E. K., Ma, Y., Sullivan, W. J., Jr, Weiss, L. M., Llinas, M., & White, M. W. (2013). ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst. Proceedings of the National Academy of Sciences of the United States of America, 110(17), 6871–6876. https://doi.org/10.1073/pnas.1300059110

Ratkevicius, C. M. A. (2021). Evaluation of cellular and humoral immune response specific to Toxoplasma gondii in immunomodulated patients due to the use of TNF blockers. Advisor: Prof. Dr. Virmondes Rodrigues Júnior. Thesis-Health Sciences, Federal University of Triângulo Mineiro. <https://bdtd.uftm.edu.br/bitstream/tede/1057/5/Tese%20Cristhianne%20M%20A%20Ratkevicius.pdf.

Rodríguez, D. F. G. (2022). Dosage of nitric oxide and hydrogen sulfide in dogs with precapillary pulmonary arterial hypertension supplemented with L-arginine. Advisor: Prof. Dr. Márcia de Oliveira Sampaio Gomes. 87. Dissertation - Veterinary Medicine, University of São Paulo. <https://www.teses.usp.br/teses/disponiveis/10/10136/tde-30052022-101843/publico/Diego_Fernando_Garcia_Rodriguez_original.pdf.

Ryning, F. W., McLeod, R., Maddox, J. C., Hunt, S., & Remington, J. S. (1979). Probable transmission of Toxoplasma gondii by organ transplantation. Annals of internal medicine, 90(1), 47–49. https://doi.org/10.7326/0003-4819-90-1-47

Santos, T. A., Portes, J. A., Damasceno-Sá, J. C., Caldas, L. A., Souza, W.d, Damatta, R. A., & Seabra, S. H. (2011). Phosphatidylserine exposure by Toxoplasma gondii is fundamental to balance the immune response granting survival of the parasite and of the host. PloS one, 6(11), e27867. https://doi.org/10.1371/journal.pone.0027867

Sharif, A. A., & Yahaya, H. (2023). Intracellular Survival of Toxoplasma gondii: Success and Adaptation. UMYU Scientifica, 2(3), 76-82. https://doi.org/10.56919/usci.2323.013

Sheffield, H. G., & Melton, M. L. (1968). The fine structure and reproduction of Toxoplasma gondii. The Journal of parasitology, 54(2), 209–226. https://doi.org/10.2307/3276925

Shen, B., Buguliskis, J. S., Lee, T. D., & Sibley, L. D. (2014). Functional analysis of rhomboid proteases during Toxoplasma invasion. mBio, 5(5), e01795-14. https://doi.org/10.1128/mBio.01795-14

Sousa, S. F., Pegoraro, F., de França Junior, M. F., D’Alessandro, W. B., Gontijo, E. E. L., & da Silva, M. G. (2023). Influência do tratamento pré-natal na prevalência de toxoplasmose congênita. Revista De Gestão E Secretariado, 14(5), 7132–7141. https://doi.org/10.7769/gesec.v14i5.2110

Souza, R. K. B., & Pinto, Ê. K. R. (2023). Apicomplexa: Uma abordagem evolutiva, bioquímica e farmacológica. Revista Multidisciplinar em Saúde, 4(4), 47. https://doi.org/10.51161/integrar/rems/3919

Souza, W., Dos Santos Martins-Duarte, É., Lemgruber, L., Attias, M., & Vommaro, R. C. (2010). Structural organization of the tachyzoite of Toxoplasma gondii. Scientia Medica, 20(1), 131-143. https://revistaseletronicas.pucrs.br/scientiamedica/article/view/5957.

Souza, W. (1974). Ultrastructural aspects of the division process of Toxoplasma gondii. Journal of the Brazilian Society of Tropical Medicine, 8, 45-65. https://doi.org/10.1590/S0037-86821974000100007

Sponchiado, M. P., & Da Silva, A. B. (2023). Alterações clínicas em crianças com toxoplasmose congênita na cidade de Cascavel/PR. Research, Society and Development, 12(6), e0612641939-e0612641939. https://doi.org/10.33448/rsd-v12i6.41939

Sugi, T., Ma, Y. F., Tomita, T., Murakoshi, F., Eaton, M. S., Yakubu, R., Han, B., Tu, V., Kato, K., Kawazu, S., Gupta, N., Suvorova, E. S., White, M. W., Kim, K., & Weiss, L. M. (2016). Toxoplasma gondii Cyclic AMP-Dependent Protein Kinase Subunit 3 Is Involved in the Switch from Tachyzoite to Bradyzoite Development. mBio, 7(3), e00755-16. https://doi.org/10.1128/mBio.00755-16

Suss-Toby, E., Zimmerberg, J., & Ward, G. E. (1996). Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8413–8418. https://doi.org/10.1073/pnas.93.16.8413

Tu, V., Yakubu, R., & Weiss, L. M. (2018). Observations on bradyzoite biology. Microbes and infection, 20(9-10), 466–476. https://doi.org/10.1016/j.micinf.2017.12.003

Uggla, A., Mattson, S., & Juntti, N. (1990). Prevalence of antibodies to Toxoplasma gondii in cats, dogs and horses in Sweden. Acta veterinaria Scandinavica, 31(2), 219–222. https://doi.org/10.1186/BF03547564

Unzaga, J. M. (2023). Toxoplasma gondii. Toxoplasmosis. In: Radman, Nilda Ester; Gamboa, María Inés; Mastrantonio, Franca Lucrecia Pedrina. Comparative parasitology. Parasitic models. La Plata: Editorial de la Universidad Nacional de La Plata (EDULP), 23-33.

Vella, S. A., Moore, C. A., Li, Z. H., Hortua Triana, M. A., Potapenko, E., & Moreno, S. N. J. (2021). The role of potassium and host calcium signaling in Toxoplasma gondii egress. Cell calcium, 94, 102337. https://doi.org/10.1016/j.ceca.2020.102337

Vincendeau, P., Gobert, A. P., Daulouède, S., Moynet, D., & Mossalayi, M. D. (2003). Arginases in parasitic diseases. Trends in parasitology, 19(1), 9–12. https://doi.org/10.1016/s1471-4922(02)00010-7

Vommaro, R. C.; Attias, M.; Souza, W. The Interaction of Toxoplasma gondii with the Host Cell. In: Souza, W.; Belfort Jr., R. Toxoplasmosis & Toxoplasma gondii. Rio de Janeiro: Editora Fiocruz, 2014. p. 69-81. https://doi.org/10.7476/9788575415719

Walker, R., Gissot, M., Croken, M. M., Huot, L., Hot, D., Kim, K., & Tomavo, S. (2013). The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation. Molecular microbiology, 87(3), 641–655. https://doi.org/10.1111/mmi.12121

Waller, R. F., Keeling, P. J., Donald, R. G., Striepen, B., Handman, E., Lang-Unnasch, N., Cowman, Alan F., Besra, Gurdyal S., Roos, David S., & McFadden, G. I. (1998). Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proceedings of the National Academy of Sciences, 95(21), 12352-12357. https://doi.org/10.1073/pnas.95.21.12352

Weiss, L. M., & Kim, K. (2000). The development and biology of bradyzoites of Toxoplasma gondii. Frontiers in bioscience : a journal and virtual library, 5, D391–D405. https://doi.org/10.2741/weiss

Wilson, C. B., Remington, J. S., Stagno, S., & Reynolds, D. W. (1980). Development of adverse sequelae in children born with subclinical congenital Toxoplasma infection. Pediatrics, 66(5), 767–774. https://doi.org/10.1542/peds.66.5.767

Wu, G., & Morris, S. M., Jr (1998). Arginine metabolism: nitric oxide and beyond. The Biochemical journal, 336 ( Pt 1)(Pt 1), 1–17. https://doi.org/10.1042/bj3360001

Yamamoto, J. H., Vallochi, A. L., Silveira, C., Filho, J. K., Nussenblatt, R. B., Cunha-Neto, E., Gazzinelli, R. T., Belfort, R., Jr, & Rizzo, L. V. (2000). Discrimination between patients with acquired toxoplasmosis and congenital toxoplasmosis on the basis of the immune response to parasite antigens. The Journal of infectious diseases, 181(6), 2018–2022. https://doi.org/10.1086/315494

Zanna, R. L. D. (2017). Study of the cellular and humoral immune response triggered by Toxoplasma gondii in immunosuppressed A/Sn mice. Advisor: Profa. Dr. Vera Lúcia Pereira Chioccola. Thesis - Sciences, Coordination of Disease Control of the São Paulo State Department of Health, São Paulo. <https://docs.bvsalud.org/biblioref/ses-sp/2017/ses-36935/ses-36935-6729.pdf.

Zhang, Y., Lai, B. S., Juhas, M., & Zhang, Y. (2019). Toxoplasma gondii secretory proteins and their role in invasion and pathogenesis. Microbiological research, 227, 126293. https://doi.org/10.1016/j.micres.2019.06.003

Downloads

Publicado

2025-01-21

Edição

Seção

Ciências da Saúde

Como Citar

Toxoplasma gondii: Aspectos celulares do parasita. Research, Society and Development, [S. l.], v. 14, n. 1, p. e7714148052, 2025. DOI: 10.33448/rsd-v14i1.48052. Disponível em: https://rsdjournal.org/rsd/article/view/48052. Acesso em: 5 dez. 2025.