Mutações gênicas e fatores ambientais que influenciam no surgimento do autismo

Autores

DOI:

https://doi.org/10.33448/rsd-v14i7.49235

Palavras-chave:

Transtorno do Espectro Autista, Epigenética, Genética.

Resumo

Introdução: O Transtorno do Espectro Autista (TEA), também conhecido como autismo, é um distúrbio do neurodesenvolvimento que possui origem multifatorial, cujas causas ainda não são totalmente compreendidas. Estudos recentes indicam que fatores genéticos e epigenéticos, associados a condições ambientais, podem exercer um papel significativo na etiologia do transtorno. Objetivo: Este trabalho teve como objetivo identificar e analisar as principais mutações gênicas e os fatores ambientais que influenciam no surgimento do TEA. Metodologia: Para isso, foi realizada uma revisão bibliográfica utilizando bases de dados científicas, com foco em publicações dos últimos dez anos. Resultados e Discussão: Os resultados apontam que genes como CHD8, SHANK3, MECP2 e SYNGAP1, entre outros, estão frequentemente associados ao autismo, enquanto fatores como estresse gestacional, infecções, poluição e uso de medicamentos durante a gravidez podem desencadear alterações epigenéticas que afetam o neurodesenvolvimento. Conclusão: Conclui-se que a interação entre alterações genéticas e exposições ambientais pode ser determinante para o desenvolvimento do TEA, evidenciando a importância de estudos integrativos na busca por estratégias de prevenção, diagnóstico precoce e intervenções terapêuticas mais eficazes.

Referências

Abdolmaleky, H. M., Alam, R., Nohesara, S., Deth, R. C. & Zhou, J-R. (2024). IPSC-Derived Astrocytes and Neurons Replicate Brain Gene Expression, Epigenetic, Cell Morphology and Connectivity Alterations Found in Autism. Cells. 13(13), 23-34. MDPI AG. http://dx.doi.org/10.3390/cells13131095.

Abdolmaleky, H. M. Zhou, J-R. & Thiagalingam, S. (2021). Cataloging Recent Advances in Epigenetic Alterations in Major Mental Disorders and Autism. Epigenomics. 13(15), 1231-45. Informa UK Limited. http://dx.doi.org/10.2217/epi-2021-0074.

Alshawsh, M., Wake, M., Gecz, J., Corbett, M., Saffery, R., Pitt, J., Greaves, R., Williams, K., Field, M. & Cheong, J. (2024). Epigenomic newborn screening for conditions with intellectual disability and autistic features in Australian newborns. Epigenomics. 16(18), 1203-214. Informa UK Limited. http://dx.doi.org/10.1080/17501911.2024.2402681.

Arberas, C. & Ruggieri, V. (2019). Autismo. Aspectos genéticos y biológicos [Autism. Genetic and biological aspects]. Medicina (B Aires). 79(Suppl 1):16-21. Spanish. PMID: 30776274. Bahado-Singh, R. O., Vishweswaraiah, S., Aydas, B. & Radhakrishna, U. (2021). Artificial intelligence and placental DNA methylation: newborn prediction and molecular mechanisms of autism in preterm children. The Journal Of Maternal-Fetal & Neonatal Medicine. 35(250, 8150-9. Informa UK Limited. http://dx.doi.org/10.1080/14767058.2021.1963704.

Banerjee, N. & Adak, P. (2022). Birth related parameters are important contributors in autism spectrum disorders. Scientific Reports. 12(1), 110-34. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41598-022-18628-4.

Booth, A., Sutton, A., & Papaioannou, D. (2016). Systematic approaches to a successful literature review (2nd ed.). SAGE.

Canuto, L. T. & Oliveira, A. A. S. (2020). Métodos de revisão bibliográfica nos estudos científicos. Psicologia em Revista. 26(1), 83-102. Pontificia Universidade Catolica de Minas Gerais. http://dx.doi.org/10.5752/p.1678-9563.2020v26n1p82-100.

Casanova, E. L., Sharp, J. L., Chakraborty, H., Sumi, N. S. & Casanova, M. F. (2016). Genes with high penetrance for syndromic and non-syndromic autism typically function within the nucleus and regulate gene expression. Molecular Autism. 7(1), 45-56. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s13229-016-0082-z.

Casarin, S. T. et al. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10 (5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924.

Correia, T. L. B.V., Cunha, T. F. Q., Andrade, E., Santos, R. C., Maciel, E. A. F., Silva, F. M. R., Pena, L., Carvalho, T. V. & Pena, H. P. (2021). Alterações epigenéticas no transtorno do espectro do autismo: uma revisão integrativa da literatura. Research, Society and Development. 11, e369101119449. doi: 10.33448/rsd-v10i11.19449. https://rsdjournal.org/index.php/rsd/article/view/19449.

Coskunpinar, E. M., Tur, S., Binici, N. C. & Songür, C. Y. (2023). Association of GABRG3, GABRB3, HTR2A gene variants with autism spectrum disorder. Gene. 870, 147-399. Elsevier BV. http://dx.doi.org/10.1016/j.gene.2023.147399.

Csoka, A. B., Kouhen, N., Bennani, S., Getachew, B., Aschner, M. & Tizabi, Y. (2024). Roles of Epigenetics and Glial Cells in Drug-Induced Autism Spectrum Disorder. Biomolecules. 14(4), 37-43. MDPI AG. http://dx.doi.org/10.3390/biom14040437.

Dorsey, S. G., Mocci, E., Lane, M. V. & Krueger, B. K. (2024). Rapid effects of valproic acid on the fetal brain transcriptome: implications for brain development and autism. Translational Psychiatry. 14(1), 23-49. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41398-024-03179-1.

Duffney, L. J., Valdez, P., Tremblay, M. W., Cao, X., Montgomery, S., McConkie-Rosell, A. & Jiang, Y-H. (2018). Epigenetics and autism spectrum disorder: a report of an autism case with mutation in h1 linker histone hist1h1e and literature review. American Journal Of Medical Genetics Part B: Neuropsychiatric Genetics. 177(4), 426-33. Wiley. http://dx.doi.org/10.1002/ajmg.b.32631.

Dunn, J. T., Guidotti, A. & Grayson, D. R. (2024). Behavioral and Molecular Characterization of Prenatal Stress Effects on the C57BL/6J Genetic Background for the Study of Autism Spectrum Disorder. Eneuro. 11(2), 186-202. Society for Neuroscience. http://dx.doi.org/10.1523/eneuro.0186-23.2024.

Escher, J., Yan, W., Rissman, E. F., Wang, H-L. V, Hernandez, A. & Corces, V. G. (2021). Beyond Genes: germline disruption in the etiology of autism spectrum disorders. Journal Of Autism And Developmental Disorders. 52 (10), 4608-24. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10803-021-05304-1.

Evêncio, K. M. M. & Fernandes, G. P. (2019). História do Autismo: compreensões iniciais / the history of autism. Id On Line Revista de Psicologia. 13(47), 133-8. Lepidus Tecnologia. http://dx.doi.org/10.14295/idonline.v13i47.1968.

Feinberg, J., Schrott, R., Ladd-Acosta, C., Newschaffer, C. J., Hertz-Picciotto, I., Croen, L. A., Fallin, M. D., Feinberg, A. P. & Volk, H. E. (2023). Epigenetic changes in sperm are associated with paternal and child quantitative autistic traits in an autism-enriched cohort. Molecular Psychiatry. 29(1), 43-53. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41380-023-02046-7.

Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230–235. https://doi.org/10.1179/2047480615Z.000000000329

Freitag, C. M., Chiocchetti, A. G., Haslinger, D., Yousaf, A. & Waltes, R. (2022). Genetische Risikofaktoren und ihre Auswirkungen auf die neurale Entwicklung bei Autismus-Spektrum-Störungen. Zeitschrift Für Kinder- Und Jugendpsychiatrie Und Psychotherapie. 50(30, 187-202. Hogrefe Publishing Group. http://dx.doi.org/10.1024/1422-4917/a000803.

Freitas, A. M., Brunoni, D. & Mussolini, J. L. (2017). Transtorno do espectro autista: estudo de uma série de casos com alterações genéticas. Cadernos de Pós-Graduação em Distúrbios do Desenvolvimento. 17(2), 101-10. GN1 Sistemas e Publicacoes Ltd.. http://dx.doi.org/10.5935/cadernosdisturbios.v17n2p101-110.

García-Ortiz, M. V., Latorre-Agular, M. J., Morales-Ruiz, T., Gómez-Fernández, A., Flores-Rojas, K., Gil-Campos, M., Martin-Borreguero, P., Ariza, R. R., Roldan,-Arjona, T. & Perez-na Vero, J. L. (2021). Analysis of Global and Local DNA Methylation Patterns in Blood Samples of Patients With Autism Spectrum Disorder. Frontiers In Pediatrics. 9. Frontiers Media SA. http://dx.doi.org/10.3389/fped.2021.685310.

Gawlińska, K., Gawliński, D., Borczyk, M., Korostyński, M., Przegaliński, E. & Filip, M. (2021). A Maternal High-Fat Diet during Early Development Provokes Molecular Changes Related to Autism Spectrum Disorder in the Rat Offspring Brain. Nutrients. 13(9), 32-45. MDPI AG. http://dx.doi.org/10.3390/nu13093212.

Hamm, C. A. & Costa, F. F. (2015). Epigenomes as therapeutic targets. Pharmacology & Therapeutics. 151, 72-86. Elsevier BV. http://dx.doi.org/10.1016/j.pharmthera.2015.03.003.

Herrera, M. L., Paraíso-Luna, J., Bustos-Martínez, I. & Barco, Á. (2024). Targeting epigenetic dysregulation in autism spectrum disorders. Trends In Molecular Medicine. 30(11), 1028-46. Elsevier BV. http://dx.doi.org/10.1016/j.molmed.2024.06.004.

Ishino, F., Itoh, J., Matsuzawa, A., Irie, M., Suzuki, T., Hiraoka, Y., Yoshikawa, M. & Kaneko-Ishino, T. (2024). RTL4, a Retrovirus-Derived Gene Implicated in Autism Spectrum Disorder, Is a Microglial Gene That Responds to Noradrenaline in the Postnatal Brain. International Journal Of Molecular Sciences. 25(24), 17-28. MDPI AG. http://dx.doi.org/10.3390/ijms252413738.

Jangjoo, M., Goodman, S. J., Choufani, S., Trost, B., Schrer, S. W., Kelley, E., Ayub, M., Nicolson, R., Georgiades, S. & Crosbie, J. (2021). An Epigenetically Distinct Subset of Children With Autism Spectrum Disorder Resulting From Differences in Blood Cell Composition. Frontiers In Neurology. 12. Frontiers Media SA. http://dx.doi.org/10.3389/fneur.2021.612817.

Khoodoruth, M. A. S., Khoodoruth, W. N. C-K., & Alwani, R. A. (2024). Exploring the epigenetic landscape: the role of 5-hydroxymethylcytosine in neurodevelopmental disorders. Cambridge Prisms: Precision Medicine. 2, 22-34. Cambridge University Press (CUP). http://dx.doi.org/10.1017/pcm.2024.2.

Kuodza, G., Kawai, R. & Lasalle, J. M. (2024). Intercontinental insights into autism spectrum disorder: a synthesis of environmental influences and dna methylation. Environmental Epigenetics. 10 (1), 10-24. Oxford University Press (OUP). http://dx.doi.org/10.1093/eep/dvae023.

Lasalle, J. M. (2023). Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Molecular Psychiatry. 28(5), 1890-901. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41380-022-01917-9.

Leva, F., Arnoldi, M., Santarelli, S., Massonot, M., Lemée, M. V., Bon, C., Pellegrini, M., Castellini, M. E., Zarantonello, G. & Messina, A. (2025). SINEUP RNA rescues molecular phenotypes associated with CHD8 suppression in autism spectrum disorder model systems. Molecular Therapy. 33(3), 1180-96. Elsevier BV. http://dx.doi.org/10.1016/j.ymthe.2024.12.043.

Lim, M., Carollo, A., Dimitriou, D. & Esposito, G. (2018). Recent Developments in Autism Genetic Research: a scientometric review from 2018 to 2022. Genes. 13(9), 1646-80. MDPI AG. http://dx.doi.org/10.3390/genes13091646.

Martin, M. & Braillon, A. (2024). Sperm epigenetic mechanisms in autism spectrum disorders. The valproate case illustrates an enduring and systemic failure. Molecular Psychiatry. 29(94), 1163-4. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41380-023-02401-8.

Masini, E., Loi, E., Vega-Benedetti, A. F., Carta, M., Doneddu, G., Fadda, R. & Zavattari, P. (2020). An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity. International Journal Of Molecular Sciences. 21 (21), 8290. MDPI AG. http://dx.doi.org/10.3390/ijms21218290.

Minayo, M. C. S. (2014). O desafio do conhecimento: Pesquisa qualitativa em saúde (14ª ed.). Hucitec.

Moschetti, A., Giangreco, M., Ronfani, L., Cervellera, S., Ruffilli, M. P., Nume, C., Barbi, E., Servidio, A. G. (2024). An ecological study shows increased prevalence of autism spectrum disorder in children living in a heavily polluted area. Scientific Reports. 14(1), 35-49. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41598-024-67980-0.

Mouat, J. S., Krigbaum, N. Y., Hakam, S., Thrall, E., Kuodza, G. E., Mellis, J., Yasui, D. H., Cirillo, P. M., Ludena, Y. & Schmidt, R. J. (2024). Sex-specific DNA methylation signatures of autism spectrum disorder in newborn blood. Biorxiv. p. 30-5. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/2024.07.11.603098.

Muratori, F. (2014). O diagnóstico precoce no autismo: guia prático para pediatras. Trad. Camilla Carmelo de Siervi e Daniele de Brito Wanderley. Ed. Núcleo Interdisciplinar de Intervenção Precoce de Bahia: Salvador. http://pepsic.bvsalud.org/scielo.php?script=sci_nlinks&ref=4429303&pid=S1983-3482201800030000600034&lng=pt.

Ocaña-Fernández, Y., & Fuster-Guillén, D. (2021). Revisión bibliográfica: un método científico para la construcción del conocimiento. Revista Científica Arbitrada Multidisciplinaria, 7(4), 35–48.

Oh, M., Yoon, N-H., Kim, S. A. & Yoo, H. J. (2024). Epigenetic Insights into Autism Spectrum Disorder: dna methylation levels of nr3c1, ascl1, and foxo3 in korean autism spectrum disorder sibling pairs. Clinical Psychopharmacology And Neuroscience. 22(4), 635-45. Korean College of Neuropsychopharmacology. http://dx.doi.org/10.9758/cpn.24.1188.

Oliveira, A. C., & Bastos, C. L. (2020). Revisão bibliográfica: conceitos e metodologias. Revista Científica Multidisciplinar Núcleo do Conhecimento, 5(9), 1–10.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Ed.UAB/NTE/UFSM. Posar, A. (2023). Autism Spectrum Disorder in 2023: a challenge still open. Turkish Archives Of Pediatrics. 6(58), 566-71. AVES YAYINCILIK A.Ş. http://dx.doi.org/10.5152/turkarchpediatr.2023.23194.

Rabeling, A. & Goolam, M. (2022). Cerebral organoids as an in vitro model to study autism spectrum disorders. Gene Therapy. 30(9), 659-69. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41434-022-00356-z.

Ramaswami, G., Won, H., Gandal, M. J., Haney, J., Wang, J. C., Wong, C. C. Y., Sun, W., Prabhakar, S., Mill, J. & Geschwind, D. H. (2020). Integrative genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in autism. Nature Communications. 11(1), 53-89. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41467-020-18526-1.

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20 (2). https://doi.org/10.1590/S0103-21002007000200001.

Rother, E. T. (2020). Revisões narrativas: atualizações e orientações para autores. Acta Paulista de Enfermagem, 33, e-ED00001. https://doi.org/10.37689/acta-ape/2020ed00001

Ruggieri, V. & Arberas, C. (2022). Mecanismos epigenéticos involucrados en la génesis del autismo [Epigenetic mechanisms involved in the genesis of autism]. Medicina (B Aires). 82(Suppl 1):48-53. Spanish. PMID: 35171808.

Santos, J. X., Rasga, C., Marques, A. R., Martinho, H., Asif, M., Vilela, J., Oliveira, G., Sousa, L., Nunes, A. & Vicente, A. M. (2022). A Role for Gene-Environment Interactions in Autism Spectrum Disorder Is Supported by Variants in Genes Regulating the Effects of Exposure to Xenobiotics. Frontiers In Neuroscience. 16, 27-34. Frontiers Media SA. http://dx.doi.org/10.3389/fnins.2022.862315.

Shao, W., Su, Y., Liu, J., Liu, Y., Zhao, J. & Fan, X. (2024). Understanding the link between different types of maternal diabetes and the onset of autism spectrum disorders. Diabetes & Metabolism. 50 (4), 101543. Elsevier BV. http://dx.doi.org/10.1016/j.diabet.2024.101543.

SIecinski, S. K., Giamberardino, S. N., Spanos, M., Hauser, A. C., Gibson, J. R., Chandrasekhar, T., Treslles, M. P., Rockhill, C. M., Palumbo, M. L. & Cundiff, A. W. (2023). Genetic and epigenetic signatures associated with plasma oxytocin levels in children and adolescents with autism spectrum disorder. Autism Research. 16(3), 502-23. Wiley. http://dx.doi.org/10.1002/aur.2884

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of business research, 104, 333-339. Song, A. Y., Bakulski, K., Feinberg, J. I., Newschaffer, C.,Croen, L. A., Hertz‐Picciotto, I., Schmidt, R. J., Farzadegan, H., Lyall, K. & Fallin, M. (2022). Daniele. Associations between accelerated parental biologic age, autism spectrum disorder, social traits, and developmental and cognitive outcomes in their children. Autism Research. 15 (12), 2359-2370. Wiley. http://dx.doi.org/10.1002/aur.2822.

Stoccoro, A., Gallo, R., Calderoni, S., Cagiano, R., Muratori, F., Migliore, L., Grossi, E. & Coppedè, F. (2022). Artificial Neural Networks Reveal Sex Differences in Gene Methylation, and Connections Between Maternal Risk Factors and Symptom Severity in Autism Spectrum Disorder. Epigenomics. 14(19), 1181-95. Informa UK Limited. http://dx.doi.org/10.2217/epi-2022-0179.

Su, L., Zhang, M., Ji, F., Zhao, J., Wang, Y., Wang, W., Zhang, S., Ma, H., Wang, Y. & Jiao, J. (2022). Microglia homeostasis mediated by epigenetic ARID1A regulates neural progenitor cells response and leads to autism-like behaviors. Molecular Psychiatry. 29(6), 1595-609. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41380-022-01703-7.

Takeda, T., Makinodan, M., Toritsuka, M. & Iwata, N. (2024). Impacts of adverse childhood experiences on individuals with autism spectrum disorder. Current Opinion In Neurobiology. 89, 102-10. Elsevier BV. http://dx.doi.org/10.1016/j.conb.2024.102932.

Tamizkar, K. H., Ghafouri-Fard, S., Omrani, M. D., Pouresmaeili, F., Arsang-Jang, S. & Taheri, M. (2021). Altered expression of lncRNAs in autism spectrum disorder. Metabolic Brain Disease. 36(5), 983-90. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11011-021-00681-z.

Torres, G., Mourad, M., Iqbal, S., Moses-Fynn, E., Pandita, A., Siddhartha, S. S., Sood, R. A., Srinivasan, K., Subbaiah, R. T. & Tiwari, A. (2023). Conceptualizing Epigenetics and the Environmental Landscape of Autism Spectrum Disorders. Genes. 14(9), 17-34. MDPI AG. http://dx.doi.org/10.3390/genes14091734.

Weber-Stadlbauer, U. (2017). Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders. Translational Psychiatry. 7(5), 25-34. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/tp.2017.78.

Wieting, J., Jahn, K., Bleich, S., Deest, M. & Frieling, H. (2024). Sex differences in MAGEL2 gene promoter methylation in high functioning autism - trends from a pilot study using nanopore Cas9 targeted long read sequencing. Bmc Medical Genomics. 17(1), 27-35. 9)

Downloads

Publicado

2025-07-28

Edição

Seção

Ciências da Saúde

Como Citar

Mutações gênicas e fatores ambientais que influenciam no surgimento do autismo. Research, Society and Development, [S. l.], v. 14, n. 7, p. e9014749235, 2025. DOI: 10.33448/rsd-v14i7.49235. Disponível em: https://rsdjournal.org/rsd/article/view/49235. Acesso em: 5 dez. 2025.