Biodegradabilidade de materiais reforçados com fibra de bananeira (Musa sp.) em matriz polimérica

Autores

DOI:

https://doi.org/10.33448/rsd-v14i12.50321

Palavras-chave:

Reforço lignocelulósico, Poliácido lático, Fibras naturais, Ensaio de soterramento, Degradação hidrolítica.

Resumo

O presente trabalho tem como objetivo avaliar a biodegradabilidade de biocompósitos de PLA reforçados com fibras de bananeira em diferentes condições, visando incentivar a redução de matéria-prima sintética através da valorização de resíduos agroindustriais. A produção industrial em larga escala tem como um dos principais impactos ambientais a geração de resíduos sintéticos de difícil degradação. Nesse contexto, o desenvolvimento de novos materiais obtidos a partir de matérias-primas de origem natural tem ganhado destaque nas últimas décadas, visando reduzir os efeitos negativos associados aos processos produtivos convencionais e promover práticas mais sustentáveis na indústria. De forma a apresentar um material sustentável e biodegradável, este estudo desenvolveu um compósito polimérico reforçado com fibra de bananeira, um resíduo agroindustrial. A fibra de bananeira, tratada e in natura, foi incorporada em matriz polimérica de PLA nas composições de 5% e 10% por meio do processo de extrusão, obtendo os biocompósitos. O ensaio de biodegradabilidade foi realizado seguindo as normas ASTM 71 D6003 e ASTM G160, em solo orgânico preparado, onde os biocompósitos foram soterrados durante 30, 60 e 90 dias. A análise de degradação foi realizada por avaliação macroscópica e, a perda de massa, por pesagem. O compósito que apresentou a maior taxa de degradação foi o compósito reforçado com 10% de fibra tratada à 1,5h. Os resultados demonstram que a inserção de fibras de bananeira, aumenta a perda de massa no compósito, indicando a influência na aceleração da degradação do compósito em solo controlado.

Referências

American Society for Testing and Materials. (2004). ASTM G160-03: Standard practice for evaluating microbial susceptibility of nonmetallic materials by laboratory soil burial. ASTM International.

Appolloni, T., Centi, G., & Yang, D. (2022). Natural fibers and biopolymers based materials: Environmental impacts and perspectives. Current Opinion in Green and Sustainable Chemistry, 35, Article 100599. https://doi.org/10.1016/j.cogsc.2022.100599

Borges, P. R. P., Ribeiro, S. A., & Souza, V. F. (2024). Compósitos poliméricos reforçados por fibras naturais: Uma revisão. Revista Eletrônica de Materiais e Processos, 18(4), 779–798. https://doi.org/10.19146/remp.v18i4.9390

Brito, Y. C., Medeiros, M. K., Sowek, A. B., & Sowek, A. B. (2022). Biodegradação em solo simulado de polietileno de alta densidade verde com farelo de soja. Brazilian Journal of Development, 8(7), 50458–50474. https://doi.org/10.34117/bjdv8n7-117

Canevarolo Júnior, S. V. (2002). Ciência dos polímeros: Um texto didático para tecnólogos e engenheiros. Artliber.

Cano-Vicent, P. (2021). Análisis de la influencia de aditivos y fibras naturales en las propiedades de matrices de PLA obtenidas por FDM [Tese de Doutorado, Universitat Politècnica de València].

Casarin, S. A., Agnelli, J. A. M., Malmonge, S. M., & Rosário, F. (2013). Blendas PHB/copoliésteres biodegradáveis: Biodegradação em solo. Polímeros, 23(1), 115–122. https://doi.org/10.1590/S0104-14282013005000003

da Luz, F. S., Losekann, M. A., dos Santos, A., & Monteiro, S. N. (2019). Hydrothermal treatment of sisal fiber for composite preparation. Journal of Composite Materials, 53(17), 2337–2347. https://doi.org/10.1177/0021998319826384

do Bem, N. A., Reitz Cardoso, F. A., de Souza Paccola, E. A., & Soto Herek Rezende, L. C. (2022). 3D-printed polylactic acid biopolymer and textile fibers: Comparing the degradation process. Revista Brasileira de Ciências Ambientais, 57(2), 302–319. https://doi.org/10.5327/Z2176-94781192

Duarte, E. B., Cardoso, F. A. R., Fornazaro, G., Arantes, E. J., Costas, G. B., Favaro, S. L., & Herek, L. C. S. (2026). Enhancing impact resistance of polylactic acid biocomposites through hydrothermal treatment of banana fiber: A preliminary study. Journal of Materials in Civil Engineering, 38(2), Article 04025529. https://doi.org/10.1061/JMCEE7.MTENG-20860

Ernest, E. M., & Peter, A. C. (2022). Application of selected chemical modification agents on banana fibre for enhanced composite production. Cleaner Materials, 5, Article 100131. https://doi.org/10.1016/j.clema.2022.100131

Farahmand, H. D., et al. (2025). A comprehensive review on the potential and challenges of natural fiber reinforced polymer composites. Journal of Composites Science. https://doi.org/10.1111/jfr3.70037

Gadioli, R., Morais, J. A., Waldman, W. R., & De Paoli, M. A. (2014). The role of lignin in polypropylene composites with semi-bleached cellulose fibers: Mechanical properties and its activity as antioxidant. Polymer Degradation and Stability, 108, 23–34.

Godinho, G. K. S. (2021). Desenvolvimento de embalagem biodegradável à base de PLA e casca de cenoura [Dissertação de Mestrado, Instituto Federal do Rio de Janeiro].

Gowman, J. G., Picard, M. C., Lim, L. T., Misra, M., & Mohanty, A. K. (2019). Review of the effect of natural fibers on the properties of poly(lactic acid) (PLA) and poly(hydroxyalkanoate) (PHA) bioplastics. Polymer Reviews, 59(4), 759–799. https://doi.org/10.1080/15583724.2019.1636294

Hendges, E. M. C., Silva, Q. L., & Bezerra, I. Q. M. (2024). Análise comparativa da influência na resistência à compressão do concreto com adição de fibra do pseudocaule da bananeira em Araguaína, Tocantins. JNT Facit Business and Technology Journal, 2(56), 167–184.

Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., ... & Nurazzi, N. M. (2021). Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 13(20), Article 3607. https://doi.org/10.3390/polym13203607

Kamarudin, S. H., Mohd Basri, M. S., Rayung, M., Abu, F., Ahmad, S., Norizan, M. N., ... & Abdullah, L. C. (2022). A review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications. Polymers, 14(17), Article 3698. https://doi.org/10.3390/polym14173698

Komal, U. K., Lila, M. K., & Singh, I. (2020). PLA/banana fiber based sustainable biocomposites: A manufacturing perspective. Composites Part B: Engineering, 180, Article 107535. https://doi.org/10.1016/j.compositesb.2019.107535

Kumar, V., Chakraborty, P., Janghu, P., Umesh, M., Sarojini, S., Pasrija, R., ... & Sivalingam, A. M. (2023). Potential of banana based cellulose materials for advanced applications: A review on properties and technical challenges. Carbohydrate Polymer Technologies and Applications, 6, Article 100366. https://doi.org/10.1016/j.carpta.2023.100366

Mei, L. H., & Oliveira, N. (2017). Caracterização de um compósito polimérico biodegradável utilizando Poli (ε-caprolactona) e borra de café. Polímeros, 27(Supl.), 99–109. https://doi.org/10.1590/0104-1428.2139

Moura, C. R. (2019). Aplicações e tratamentos da fibra de bambu e similares: Uma revisão. The Journal of Engineering and Exact Sciences, 5(5), 0484–0490. https://doi.org/10.18540/jcecvl5iss5pp0484-0490

Nogueira, T. S., et al. (2023). Desenvolvimento de biofilmes a partir de amido: Uma revisão. Revista Brasileira de Engenharia, 10(2), 45–52.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.

Prem Chand, R., Ravitej, Y. P., Chandrasekhar, K. M., Adarsha, H., Shivamani Kanta, J. V., Veerachari, M., Ravi Kumar, R., & Abhinandan. (2021). Characterization of banana and E-glass fiber reinforced hybrid epoxy composites. Materials Today: Proceedings, 46, 9119–9125. https://doi.org/10.1016/j.matpr.2021.05.402

Rajesh, G., Prasad, A. V. R., & Gupta, A. V. S. S. K. S. (2019). Soil degradation characteristics of short sisal/PLA composites. Materials Today: Proceedings, 18(1), 1–7. https://doi.org/10.1016/j.matpr.2019.06.270

Rao, H. R., et al. (2021). Influence of fibre loading and surface modification on mechanical and thermal properties of agro-waste sugar palm fibre reinforced polyurethane composites. Polymers, 13(16), Article 2686. https://doi.org/10.3390/polym13162686

Rao, V. V., et al. (2024). A comprehensive review of natural fibers: Bio-based constituents for advancing sustainable materials technology. Journal of Renewable Materials, 13(2), 1–10. https://doi.org/10.32604/jrm.2024.056275

Siakeng, R., Jawaid, M., Ariffin, H., Sapuan, S. M., Asim, M., & Saba, N. (2020). Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: Evaluation of mechanical, morphological, thermal and physical properties. Express Polymer Letters, 14(8), 717–730. https://doi.org/10.3144/expresspolymlett.2020.59

Subash, M. C., & Muthiah, P. (2021). Eco-friendly degumming of natural fibers for textile applications: A comprehensive review. Cleaner Engineering and Technology, 5, Article 100304. https://doi.org/10.1016/j.clet.2021.100304

Xu, H., Shi, X., Chung, C., Lei, Z., Zhang, W., & Yu, K. (2021). A sustainable manufacturing method of thermoset composites based on covalent adaptable network polymers. Composites Part B: Engineering, 221, Article 109004. https://doi.org/10.1016/j.compositesb.2021.109004

Yadav, V., Singh, S., Chaudhary, N., Garg, M. P., Sharma, S., Kumar, A., Li, C., & Tag Eldin, E. M. (2023). Dry sliding wear characteristics of natural fibre reinforced poly-lactic acid composites for engineering applications: Fabrication, properties and characterizations. Journal of Materials Research and Technology, 23, 1189–1203. https://doi.org/10.1016/j.jmrt.2023.01.006

Downloads

Publicado

2025-12-08

Edição

Seção

Engenharias

Como Citar

Biodegradabilidade de materiais reforçados com fibra de bananeira (Musa sp.) em matriz polimérica. Research, Society and Development, [S. l.], v. 14, n. 12, p. e67141250321, 2025. DOI: 10.33448/rsd-v14i12.50321. Disponível em: https://rsdjournal.org/rsd/article/view/50321. Acesso em: 16 dez. 2025.