Avaliação da contaminação por metais e metaloides em águas superficiais do rio Pirapó, Estado do Paraná (PR), Brasil, e seus riscos ambientais e à saúde humana

Autores

DOI:

https://doi.org/10.33448/rsd-v14i12.50409

Palavras-chave:

Elementos contaminantes, Contaminação hídrica, Peixes, Avaliação de risco, ICP-MS.

Resumo

A contaminação por metais e metaloides constitui uma das principais ameaças aos ecossistemas aquáticos e à saúde humana, especialmente em bacias hidrográficas sujeitas a intensas atividades urbanas, industriais e agrícolas. Neste estudo, avaliou a presença e os níveis de metais na água superficial e em tecidos de peixes do rio Pirapó (PR), utilizando espectrometria de massas com plasma acoplado indutivamente (ICP-MS). As amostras foram coletadas em seis pontos estrategicamente selecionados de acordo com o grau de interferência antrópica ao longo da bacia. Os elementos analisados (Al, As, Hg, Zn, Se, Pb, Cd, Ni, Co, Mn, Fe, Cr e Cu) foram quantificados após digestão ácida por micro-ondas e comparados com valores orientadores nacionais e internacionais. Os resultados revelaram concentrações elevadas de metais tóxicos, com destaque para arsênio, mercúrio, selênio, cobalto e manganês, sobretudo nos peixes, indicando potencial risco à saúde humana. Esses achados demonstram a influência de fontes antrópicas sobre a qualidade ambiental do rio Pirapó e reforçam a necessidade de monitoramento contínuo e de políticas públicas voltadas à mitigação da contaminação metálica na região.

Referências

Agbugui, M. O., & Abe, G. O. (2022). Heavy metals in fish: Bioaccumulation and health. British Journal of Earth Sciences Research, 10(1), 47–66. https://doi.org/10.37745/bjesr.2013.

Brasil. (2004). Resolução CONAMA nº 344, de 25 de março de 2004. Estabelece diretrizes para avaliação de materiais dragados. Diário Oficial da União. Recuperado em 18 outubro, 2025, de http://www.mma.gov.br/port/conama/res/res04/res34404.xml.

Brasil. Conselho Nacional do Meio Ambiente. (2005). Resolução CONAMA nº 357, de 17 de março de 2005. Classificação dos corpos de água e diretrizes ambientais.

Brasil. Agência Nacional de Vigilância Sanitária. (2022). Instrução Normativa nº 160, de 1º de julho de 2022. Limites máximos tolerados de contaminantes em alimentos.

Brewer, G. J. (2010). Risks of copper and iron toxicity during aging in humans. Chemical Research in Toxicology, 23(2), 319–326.

Charkiewicz, A. E., & Backstrand, J. R. (2020). Lead toxicity and pollution in Poland. International Journal of Environmental Research and Public Health, 17, 1–14.

Coulson, J. M., & Hughes, B. W. (2022). Dose-response relationships in aluminium toxicity in humans. Clinical Toxicology, 60(4), 415–428.

Graça, C. H. da, & Silveira, H. (2020). Vulnerabilidade à contaminação das águas superficiais da Bacia Hidrográfica do Rio Pirapó, Paraná. Revista do Departamento de Geografia, 40, 175–190. https://doi.org/10.11606/eISSN.2236-2878.rdg.2020.162662.

Debnath, A., Singh, P. K., & Sharma, Y. C. (2021). Metallic contamination of global river sediments and latest developments for their remediation. Journal of Environmental Management, 113378.

European Food Safety Authority (EFSA). (2012). Guidance on selected default values to be used in the absence of measured data. Recuperado em 05 outubro, 2025, de https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2012.2579

European Food Safety Authority (EFSA). (2010). Scientific Opinion on Dietary Reference Values for water. Recuperado em 10 outubro, 2025, de https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2010.1459.

Espírilla, A. T., & Gómez, T. B. P. (2022). Distribution and assessment of the environmental risk of heavy metals in Aguada Blanca reservoir, Peru. Ambiente & Água, 17(4), e2838.

Johri, N., Jacquillet, G., & Unwin, R. (2010). Heavy metal poisoning: The effects of cadmium on the kidney. Biometals, 23(5), 769–782.

Leite, C. E., et al. (2024). Biodisponibilidade de metais em sedimentos e peixes em áreas agrícolas e urbanas do rio Pirapó: toxicidade potencial e monitoramento ambiental. Fórum Ambiental da Alta Paulista.

Leite, L. A. R., et al. (2016). Contracaecum sp. parasitizing Acestrorhynchus lacustris as a bioindicator for metal pollution in the Batalha River, southeast Brazil. Science of the Total Environment, 571, 1230–1239.

Leite, L. A. R., Pedreira Filho, W. R., Azevedo, R. K., & Abdallah, V. D. (2021). Patterns of distribution and accumulation of trace metals in parasites and fish hosts in neotropical rivers. Environmental Pollution, 277.

Luo, Q., Liu, Z., Yin, H., Dang, Z., Wu, P., Zhu, N., Lin, Z., & Liu, Y. (2018). Migration and potential risk of trace phthalates in bottled water: A global situation. Water Research, 147, 362–372. https://doi.org/10.1016/j.watres.2018.10.002.

Margaritis, K., Margioula-Siarkou, G., Giza, S., Kotanidou, E. P., Tsinopoulou, V. R., Christoforidis, A., & Galli-Tsinopoulou, A. (2021). Micro-RNA implications in type-1 diabetes mellitus: A review of literature. International Journal of Molecular Sciences, 22(22), 12165. https://doi.org/10.3390/ijms222212165.

Mello, K., Taniwaki, R. H., Paula, F. R., Valente, R. A., Randhir, T. O., Macedo, D. R., Leal, C. G., Rodrigues, C. B., & Hughes, R. M. (2020). Multiscale land-use impacts on water quality: Assessment, planning, and future perspectives in Brazil. Journal of Environmental Management, 270, 110879.

Moiseenko, T. I., & Gashkina, N. A. (2020). Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: Influence of the aquatic environment and climate. Environmental Research Letters, 15, 115013.

Paschoalini, A. L., & Bazzoli, N. (2021). Heavy metals affecting Neotropical freshwater fish: A review of the last 10 years of research. Aquatic Toxicology, 237, 105906.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. (Free ebook). Santa Maria. Editora da UFSM.

Rivera-Valdivia, N., Arteaga-Rivera, K., Reyes-Guanes, J., Neira-Segura, N., & de-la-Torre, A. (2021). Severe sequelae in bilateral acute iris transillumination syndrome secondary to the use of oral moxifloxacin: A case report. Journal of Medical Case Reports, 15(1), 462. https://doi.org/10.1186/s13256-021-03075-y.

Saravanan, P., Saravanan, V., Rajeshkannan, R., Arnica, G., Rajasimman, M., Baskar, G., & Pugazhendhi, A. (2024). Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environmental Research, 258, 119440. https://doi.org/10.1016/j.envres.2024.119440.

Sheikhzadeh, H., & Hamidian, A. H. (2021). Bioaccumulation of heavy metals in fish species of Iran: A review. Environmental Geochemistry and Health, 43(10), 3749–3869.

Shitsuka, R. et al. (2014). Matemática fundamental para a tecnologia. (2ed). Editora Érica.

Vergara-Gerónimo, C. A., et al. (2021). Arsenic-protein interactions as a mechanism of arsenic toxicity. Toxicology and Applied Pharmacology, 431, 115738.

Wang, H., Liu, Z. H., Tang, Z., Zhang, J., Yin, H., Dang, Z., Wu, P., & Liu, Y. (2020). Bisphenol analogues in Chinese bottled water: Quantification and potential risk analysis. Science of the Total Environment, 713, 136583. https://doi.org/10.1016/j.scitotenv.2020.136583.

Downloads

Publicado

2025-12-19

Edição

Seção

Ciências Exatas e da Terra

Como Citar

Avaliação da contaminação por metais e metaloides em águas superficiais do rio Pirapó, Estado do Paraná (PR), Brasil, e seus riscos ambientais e à saúde humana. Research, Society and Development, [S. l.], v. 14, n. 12, p. e151141250409, 2025. DOI: 10.33448/rsd-v14i12.50409. Disponível em: https://rsdjournal.org/rsd/article/view/50409. Acesso em: 2 jan. 2026.