Oxalic acid in unconventional food plants – UFP: Scoping review protocol
DOI:
https://doi.org/10.33448/rsd-v14i7.49150Keywords:
Oxalic Acid, Oxalates, Plants Edible, PANC, Scoping Review.Abstract
Unconventional Food Plants (UFP) are species with food potential that, although present in various regions, are still little known and consumed by the population. These plants can contribute to Food and Nutrition Security (FNS) due to their nutritional and functional properties. However, some UFP contain antinutritional factors, such as calcium oxalate, which can compromise the bioavailability of nutrients and pose health risks, such as the formation of kidney stones and gastrointestinal toxicity. In this context, the present protocol aims to verify the presence and oxalic acid in different genera or species of UFP and assess the safety of consumption. The search will be carried out in the databases BVS, PubMed, Embase, FSTA, Science Direct, Scopus, Web of Science, Google Scholar and grey literature (Open Grey, DART-Europe), with no restriction on date or language, including studies in Portuguese, English and Spanish. Two independent reviewers will screen the studies, and divergences will be resolved by a third. The extracted data will be organized in tables, evaluated, the oxalate: calcium ratio calculated, discussed in terms of risk and safe recommendation for oxalate intake. It is expected that this review may contribute to scientific knowledge about oxalate levels in UFP and support safe utilization strategies of these Genera and species in human nutrition.
References
Alkhoury, R., & Alkhatib, R. (2024). Comparative anatomical analysis of three Rumex L. species (Polygonaceae): Stem and leaf cross-sections study. Research Journal of Pharmacy and Technology, 17(11), e5235.
Aromataris, E., Lockwood, C., Porritt, K., Pilla, B., & Jordan, Z. (2024). JBI manual for evidence synthesis. JBI. https://doi.org/10.46658/JBIMES-24-01.
Ferreira, C. P., Lima, M. D. C., Silva, J. G., & Araujo, P. N. M. (2024). Nutritional composition, phenolic compounds and biological activities of selected unconventional food plants. Food Research International, 191, 114643.
Huang, Y., Zhang, Y. H., Chi, Z. P., Huang, R., Huang, H., Liu, G. Y., Zhang, Y. F., Yang, H. S., Lin, J. H., Yang, T. H., & Cao, S. Z. (2020). The handling of oxalate in the body and the origin of oxalate in calcium oxalate stones. Urologia Internationalis, 104(3), 167–176.
Khan, M., Bashir, N., Pandith, S., Xá, M., Reshi, Z., & Shahzad, A. (2024). Rhubarb: A new model plant to study the enigma of calcium oxalate synthesis. Food Chemistry, 434, 137458.
Li, P., Liu, C., Luo, Y., Shi, H., Li, Q., PinChu, C., Li, X., Yang, J., & Fan, W. (2022). Oxalate in plants: Metabolism, function, regulation, and application. Journal of Agricultural and Food Chemistry, 70(51), 16037–16049.
Milião, G. L., Ana, P. H., Lucas, S. S., & Tarsila, A. (2022). Unconventional food plants: Nutritional aspects and perspectives for industrial applications. Future Foods, 5, 100124.
Misiewicz, B., Mencer, D., Terzaghi, W., & Vanwert, A. L. (2023). Analytical methods for oxalate quantification: The ubiquitous organic anion. Molecules, 28(7), 3206.
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097.
Noonan, S. C., & Savage, G. P. (1999). Oxalate content of foods and its effect on humans. Asia Pacific Journal of Clinical Nutrition, 8, 64–74.
Pereira, F., Medeiros, F., & Araújo, P. (2021). Natural toxins in Brazilian unconventional food plants. Jacob, M.C.M., Albuquerque, U.P. (eds) Local Food Plants of Brazil. Ethnobiology. Springer, Cham.
Susilo, J., Purwanto, B., Doewes, M., & Indarto, D. (2021). Calcium oxalate crystals: Epidemiology, causes, modeling of crystal formation and treatment management. Journal of Pharmaceutical Sciences and Research, 13(2), 118–123.
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., & Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473.
Vela-Gutiérrez, G., Velázquez, L. A. A., Pascacio, V. G. T., López, D. G. V., García, E. L., & Medina, J. L. C. (2022). Effect of heat treatment on oxalate and hydrocyanic acid levels of malanga corms of two cultivars (Xanthosoma sagittifolium and Colocasia esculenta) in a murine model. Journal of Food Science and Technology, 59(1), 220–227.
Zorzela, L., Loke, Y. K., Ioannidis, J. P., Golder, S., Santaguida, P., Altman, D. G., Moher, D., & Vohra, S. (2016). PRISMA harms checklist: Improving harms reporting in systematic reviews. BMJ, 1(352), 157-174.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gyl Felype Queiroz Batista; Giovanna Camile Vaz Gonçalves; Lilian Mitsuko Tanikawa; Karla Suzana Moresco; Sila Mary Rodrigues Ferreira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
