Thermographic analysis of the lower limbs before and after application of the whole body vibration technique: Comparative study
DOI:
https://doi.org/10.33448/rsd-v14i7.49232Keywords:
Termography, Vibration, Lower Extremity, Skin Temperature.Abstract
Introduction: Whole-body vibration can cause changes in peripheral blood perfusion, making infrared thermography an essential tool for analyzing the thermographic adaptations generated. Objective: to evaluate the thermographic repercussions in the anterior and posterior regions of the thigh and leg, comparing the oscillation and vibration modes of a whole-body vibrating platform in healthy individuals. Materials and methods: This comparative, descriptive, and quantitative study, approved by the Research Ethics Committee of the University of Ribeirão Preto (CAAE 74029023.4.0000.5498), selected four sedentary women, with a mean age of 21.5 ± 0.5 years. The participants underwent seven 10-minute sessions in oscillation mode and seven in vibration mode, with infrared thermography (FLIR C3x camera) performed before and after each session in a controlled room. Data analysis was performed statistically using SPSS Statistics v.25, using independent and paired t-test with p<0.05. Results: the oscillation mode decreased the temperature in all regions, with significance in the posterior region of the thigh bilaterally (p<0.05). The vibration mode, in turn, resulted in higher mean temperatures in all regions evaluated compared to oscillation, presenting significant increases in most areas in the reassessment (p<0.05). Conclusion: the vibrating platform influences the temperature of the lower limbs, with the vibration mode (higher frequency) generating greater hyperradiance. Limitations include the small sample size and the lack of functional correlation, suggesting the need for future research to optimize the tool in rehabilitation and performance.
References
Akamine, C. T. & Yamamoto, R. K. (2009). Estudo dirigido: estatística descritiva. (3ed). Editora Érica.
Dickin, D. C., McCain, M. A., Hubble, R. P., Doan, J. B. & Sessford, D. (2012). Alterações na frequência e complexidade da oscilação postural em ambientes sensoriais alterados após vibrações de corpo inteiro. Human Movement Science. 31(5), 1238–46. doi: 10.1016/j.humov.2011.12.007.
Games, K. E. & Sefton, J. M. (2013). A vibração de corpo inteiro influencia a função circulatória e neurológica dos membros inferiores. Revista Escandinava de Medicina e Ciência nos Esportes. 23(4), 516–23. doi: 10.1111/j.1600-0838.2011.01419.x.
Gomes, G. G. et al. (2022). Bite Force, Thickness, and Thermographic Patterns of Masticatory Muscles Post-Hemorrhagic Stroke. Journal of Stroke and Cerebrovascular Diseases. 31(1), 106173. doi: 10.1016/j.jstrokecerebrovasdis.2021.106173.
Khaksari, K., Nguyen, T., Hill, B., Quang, T., Perreault, J., Gorti, V. et al. (2021). Review of the efficacy of infrared thermography for screening infectious diseases with applications to COVID-19. J Med Imaging (Bellingham). 8(Suppl 1), 010901. doi: 10.1117/1.JMI.8.S1.010901.
Marín, P. J, García Rioja, J., Bernardo-Filho, M. & Hazell, T. J. (2015). Effects of Different Magnitudes of Whole-Body Vibration on Dynamic Squatting Performance. J Strength Cond Res. 29(10):2881-7. doi: 10.1519/JSC.0000000000000940.
Moreira, D. G. et al. (2017). Thermographic imaging in sports and exercise medicine: A Delphi study and consensus statement on the measurement of human skin temperature. Journal of Thermal Biology. 69, 155-62. doi: 10.1016/j.jtherbio.2017.07.006.
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Ed.UAB/NTE/UFSM. Physical. (2023). Plataforma Body Slimmer. https://physical.ind.br/index.php/produto/plataforma-body-slimmer/.
Piva, G., Crepaldi, A., Zenunaj, G., Caruso, L., Rinaldo, N., Gasbarro, V. et al. (2022). The Value of Infrared Thermography to Assess Foot and Limb Perfusion in Relation to Medical, Surgical, Exercise or Pharmacological Interventions in Peripheral Artery Disease: A Systematic Review. Diagnostics (Basel). 12(12), 3007. doi: 10.3390/diagnostics12123007.
Pokorná, J., Bálintová, Z., Bernard, V. & Staffa, E. (2025). Infrared thermography examination of post-traumatic conditions of the hand nerves in paediatric patients compared to EMG examination. Infrared Physics & Technology. 147, 105838. ISSN 1350-4495. doi: 10.1016/j.infrared.2025.105838.
Ramirez-GarciaLuna, J. L., Bartlett, R., Arriaga-Caballero, J. E., Fraser, R. D. J. & Saiko, G. (2022). Infrared Thermography in Wound Care, Surgery, and Sports Medicine: A Review. Front Physiol. 13, 838528. doi: 10.3389/fphys.2022.838528.
Rittweger, J. (2010). Vibration as an exercise modality: How it may work, and what its potential might be. Eur J Appl Physiol. 108, 877–904.
Schlee, G., Reckmann, D. & Milani, T. L. (2012). O treinamento de vibração de corpo inteiro reduz a sensibilidade plantar do pé, mas melhora o controle do equilíbrio em indivíduos saudáveis. Neuroscience Letters. 506(1), 70–3. doi: 10.1016/j.neulet.2011.10.051.
Shitsuka et al. (2014). Matemática fundamental para a tecnologia. Editora Érica.
Soares, L. T. et al. (2014). Balance, gait and quality of life in Parkinson's disease: Effects of whole body vibration treatment. Fisioter. mov. 27(2). doi: 10.1590/0103-5150.027.002.AO11.
Sonza, A., Maurer, C., Achaval, M., Zaro, M. A. & Nigg, B. M. (2013). Human cutaneous sensors on the sole of the foot: altered sensitivity and recovery time after whole body vibration. Neurosci Lett. 533, 81-5. doi: 10.1016/j.neulet.2012.11.036.
Sonza, A., Robinson, C. C., Achaval, M. & Zaro, M. A. (2015). Whole body vibration at different exposure frequencies: infrared thermography and physiological effects. ScientificWorldJournal. 2015, 452657. doi: 10.1155/2015/452657.
Torvinen, S., Kannu, P., Sievanen, H., Jarvinen, T. A., Pasanen, M., Kontulainen, S. et al. (2002). Effect of a vibration exposure on muscular performance and body balance. Randomized cross-over study. Clin Physiol Funct Imaging. 22, 145–52.
Torvinen, S., Kannus, P., Sievänen, H. et al. (2003). Efeito da vibração vertical de corpo inteiro durante 8 no desempenho ósseo, muscular e equilíbrio corporal: um estudo randomizado controlado. Journal of Bone and Mineral Research. 18(5), 876–84. doi: 10.1359/jbmr.2003.18.5.876.
Vieira, S. (2021). Introdução à bioestatística. Editora GEN/Guanabara Koogan.
Ye, J., Ng, G. & Yuen, K. (2014). Acute effects of whole-body vibration on trunk muscle functioning in young healthy adults. J Strength Cond Res. 28, 2872–9.
Zaidell, L. N., Mileva, K. N., Sumners, D. P. & Bowtell, J. L. (2013). Experimental evidence of the tonic vibration reflex during whole-body vibration of the loaded and unloaded leg. PLoS One. 8, e85247.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Isabella Mattos Bassoli; Guilherme Gallo Costa Gomes; Larissa Audi Teixeira Mota; Carla Adelino Suaid; Edson Donizetti Verri; Gabriel Pádua da Silva

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
