Analysis of biomass yield and chemical composition of elephant grass at different growth stages

Authors

DOI:

https://doi.org/10.33448/rsd-v14i7.49300

Keywords:

Leaves, Stems, Cellulose, Hemicellulose, Lignin.

Abstract

Planting conditions and harvest timing significantly influence the morphological composition and quality of elephant grass. The objective of this study was to evaluate the dry matter production and compositional changes of elephant grass in terms of ash, extractives, protein, lignin, cellulose, and hemicellulose contents at different growth stages (60 days, 90 days, 120 days, and 60 days regrowth) to recommend ideal harvest periods for specific applications. During the experimental period, favorable climatic conditions prevailed, with temperatures ranging from 17.3 °C to 32.2 °C and cumulative precipitation totaling 1,178 mm. Ash content decreased from 7.2% at 60 days to 4.8% at 120 days, while lignin content increased significantly from 16.9% to 32.7%, reflecting structural changes with plant maturity. Based on these findings, shorter harvest intervals (e.g., 60 days or 60-day regrowth) are recommended for energy generation and forage production due to the lower ash content and higher biodegradability. In contrast, longer growth periods (e.g., 90-120 days) are preferable for applications requiring higher cellulose, hemicellulose, and lignin fractions in lignocellulosic biorefineries.

References

An, L., Si, C., Wang, G., Sui, W., & Tao, Z. (2019). Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Industrial Crops and Products, 128 (September 2018), 177–185. https://doi.org/10.1016/j.indcrop.2018.11.009

Boschiero, B. N., Castro, S. G. Q. de, da Cruz, L. P., Carvalho, J. L. N., Silva, S. R., Bressiani, J. A., & Kölln, O. T. (2023). Biomass yield, nutrient removal, and chemical composition of energy cane genotypes in Southeast Brazil. Industrial Crops and Products, 191, 115993. https://doi.org/10.1016/J.INDCROP.2022.115993

Dresch, A. P., Cavali, M., dos Santos, D. F., Fogolari, O., Pinto, V. Z., Mibielli, G. M., & Bender, J. P. (2023). Different treatments of pearl millet biomass for cellulose recovery: Effects on lignocellulosic composition. Cellulose Chemistry and Technology, 57(3–4), 227–236. https://doi.org/10.35812/cellulosechemtechnol.2023.57.22

Dresch, A. P., Schmidt, A. R., Cavali, M., Silva, G. B. da, Fogolari, O., Manica, D., Domingos, D. G., Bagatini, M. D., Pinto, V. Z., Alves Júnior, S. L. MIBIELLI, G. M., BENDER, J. P., & TELEKEN, J. G. (2025). Valorization of elephant grass biomass: Ethanol production from cellulose fraction and anticancer application of lignin. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-025-06583-9

EPAGRI. (2024). EPAGRI/CIRAM - AGROCONNECT [WWW Document]. https://ciram.epagri.sc.gov.br/agroconnect/

Fahey, G. C., Novotny, L., Layton, B., & Mertens, D. R. (2019). Critical factors in determining fiber content of feeds and foods and their ingredients. Journal of AOAC International, 102(1), 52–62. https://doi.org/10.5740/JAOACINT.18-0067

Fedenko, J. R., Erickson, J. E., Woodard, K. R., Sollenberger, L. E., Vendramini, J. M. B., Gilbert, R. A., Helsel, Z. R., & Peter, G. F. (2013). Biomass production and composition of perennial grasses grown for bioenergy in a subtropical climate across Florida, USA. Bioenergy Research, 6(3), 1082–1093. https://doi.org/10.1007/S12155-013-9342-3/

Ferreira, S. D., Manera, C., Silvestre, W. P., Pauletti, G. F., Altafini, C. R., & Godinho, M. (2019). Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste and Biomass Valorization, 10(10), 3089–3100. https://doi.org/10.1007/S12649-018-0347-1/

Flores, R. A., Urquiaga, S., Alves, B. J. R., Collier, L. S., & Boddey, R. M. (2012). Yield and quality of elephant grass biomass produced in the Cerrados region for bioenergy. Engenharia Agrícola, 32(5), 831–839. https://doi.org/10.1590/S0100-69162012000500003

Freitas, R., Da Costa Barbé, T., Figueiredo Daher, R., Kesia, A., Vidal, F., Stida, W. F., Brito Da Silva, V., Rafaela Da, B., Menezes, S., & Pereira, A. Vander. (2017). Chemical Composition and Energy Yield of Elephant-Grass Biomass as Function of Five Different Production Ages. Journal of Agricultural Science, 10(1), p343. https://doi.org/10.5539/JAS.V10N1P343

Ivanova, D., Nikolova, G., Karamalakova, Y., Semkova, S., Marutsova, V., & Yaneva, Z. (2023). Water-soluble alkali lignin as a natural radical scavenger and anticancer alternative. International Journal of Molecular Sciences, 24(16). https://doi.org/10.3390/

Iyyappan, J., Pravin, R., Al-Ghanim, K. A., Govindarajan, M., Nicoletti, M., & Baskar, G. (2023). Dual strategy for bioconversion of elephant grass biomass into fermentable sugars using Trichoderma reesei towards bioethanol production. Bioresource Technology, 374, 128804. https://doi.org/10.1016/j.biortech.2023.128804

Johannes, L. P., Minh, T. T. N., & Xuan, T. D. (2024). Elephant grass (Pennisetum purpureum): A bioenergy resource overview. Biomass, 4(3), 625–646. https://doi.org/10.3390/BIOMASS4030034

Lang, M., & Li, H. (2022). Toward value-added arenes from lignin-derived phenolic compounds via catalytic hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 10(40), 13208–13243. https://doi.org/10.1021/acssuschemeng.2c04266

Lee, M. K., Tsai, W. T., Tsai, Y. L., & Lin, S. H. (2010). Pyrolysis of napier grass in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 88(2), 110–116. https://doi.org/10.1016/J.JAAP.2010.03.003

Lucaroni, A. C., Dresch, A. P., Fogolari, O., Giehl, A., Treichel, H., Bender, J. P., Mibielli, G. M., & Alves Júnior, S. L. (2022). Effects of Temperature and pH on Salt-Stressed Yeast Cultures in Non-Detoxified Coconut Hydrolysate. Industrial Biotechnology, 18(4). https://doi.org/10.1089/ind.2021.0029

Marafon, A. C., Amaral, A. F. C., Machado, J. C., Carneiro, J. da C., Bierhals, A. N., & Guimarães, V. dos S. (2021). Chemical composition and calorific value of elephant grass varieties and other feedstocks intended for direct combustion. Grassland Science, 67(3), 241–249. https://doi.org/10.1111/GRS.12311

Na, C. I., Sollenberger, L. E., Fedenko, J. R., Erickson, J. E., & Woodard, K. R. (2016). Seasonal changes in chemical composition and leaf proportion of elephantgrass and energycane biomass. Industrial Crops and Products, 94, 107–116. https://doi.org/10.1016/J.INDCROP.2016.07.009

Nobel, P. S. (2017). Basic water relations. Encyclopedia of Applied Plant Sciences, 1, 105–109. https://doi.org/10.1016/B978-0-12-394807-6.00070-8

Peixoto, A. da S., de Jesus dos Santos, E., Schwartz, G., Santos Moreira, H. K., da Cruz, B. E. P., Cruz, L. N., Almeida Pereira, R. de, Bardales Lozano, R. M., & Silva Dionisio, L. F. (2024). Nutritional value of elephant grass in response to different harvest times in Roraima state, Brazil. Semina: Ciências Agrárias, 46(1), 7–22. https://doi.org/10.5433/1679-0359.2025v46n1p7

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [e-book gratuito]. Editora da UFSM. https://repositorio.ufsm.br/handle/1/15824

Pereira, A. Vander, De Andrade Lira, M., Machado, J. C., De Miranda Gomide, C. A., Martins, C. E., Da Silva Lédo, F. J., & Daher, R. F. (2021). Elephantgrass, a tropical grass for cutting and grazing. Revista Brasileirade Ciencias Agrarias, 16(2). https://doi.org/10.5039/AGRARIA.V16I3A9317

Rengsirikul, K., Ishii, Y., Kangvansaichol, K., Pripanapong, P., Sripichitt, P., Punsuvon, V., Vaithanomsat, P., Nakamanee, G., & Tudsri, S. (2011). Effects of inter-cutting interval on biomass yield, growth components and chemical composition of napiergrass (Pennisetum purpureum Schumach) cultivars as bioenergy crops in Thailand. Grassland Science, 57(3), 135–141. https://doi.org/10.1111/J.1744-697X.2011.00220.X

Rueda, J. A., Guerrero-Rodríguez, J. de D., Ramírez-Ordoñes, S., Aguilar-Martínez, C. U., Hernández-Montiel, W., & Ortega-Jiménez, E. (2020). Morphological composition and fiber partitioning along regrowth in elephant grass CT115 intended for ethanol production. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-72169-2

Schmidt, A. R., Dresch, A. P., Alves Júnior, S. L., Bender, J. P., & Treichel, H. (2023). Applications of Brewer’s Spent Grain Hemicelluloses in Biorefineries: Extraction and Value-Added Product Obtention. Catalysts, 13(4), 1–23. https://doi.org/10.3390/catal13040755

Schmidt, A. R., Dresch, A. P., Marth, J., Giehl, A., Fogolari, O., Dallago, R. M., Treichel, H., Mibielli, G. M., Alves Junior, S. L., & Bender, J. P. (2025). Impact of Oxalic Acid Pretreatment on the Solubility and Fermentability of Hemicelluloses in Brewer’s Spent Grain. Industrial Biotechnology. https://doi.org/10.1089/ind.2024.0045

Scopel, E., Camargos, C. H. M., Pinto, L. O., Trevisan, H., Ferreira, E. S., & Rezende, C. A. (2023). Broadening the product portfolio with cellulose and lignin nanoparticles in an elephant grass biorefinery. Biofuels, Bioproducts and Biorefining, 17(4), 859–872. https://doi.org/10.1002/BBB.2476

Scopel, E., & Rezende, C. A. (2021). Biorefinery on-demand: Modulating pretreatments to recover lignin, hemicellulose, and extractives as co-products during ethanol production. Industrial Crops and Products, 163, 113336. https://doi.org/10.1016/J.INDCROP.2021.113336

Scopel, E., Santos, L. C. dos, Bofinger, M. R., Martínez, J., & Rezende, C. A. (2020). Green extractions to obtain value-added elephant grass co-products in an ethanol biorefinery. Journal of Cleaner Production, 274. https://doi.org/10.1016/j.jclepro.2020.122769

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008a). Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP); Issue Date: 7/17/2005.

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of structural carbohydrates and lignin in Biomass—NREL/TP-510-42618. Laboratory Analytical Procedure (LAP), April 2008, 17.

Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008b). Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Issue Date 7/17/2005.

Sousa, L. B. de, Daher, R. F., Da Silva Menezes, B. R., Rodrigues, E. V., Tardin, F. D., De Amaral Gravina, G., & Vander Pereira, A. (2016). Qualidade da biomassa em híbridos de capim-elefante para fins energéticos. Revista Brasileira de Ciências Agrárias, 11(2), 85–91. https://doi.org/10.5039/AGRARIA.V11I2A5370

Takara, D., & Khanal, S. K. (2015). Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential. Bioresource Technology, 188, 103–108. https://doi.org/10.1016/J.BIORTECH.2015.01.114

Tanganini, I. C., Camargos, C. H. . M., Jackson, J. C., Rezende, C. A., Ceccato-Antonini, S. R., & Faria, A. F. (2024). Self-assembled lignin nanoparticles produced from elephant grass leaves enable selective inactivation of Gram-positive microorganisms. RSC Sustainability, November 2023, 1–45. https://doi.org/10.1039/D3SU00400G

Toscan, A., Fontana, R. C., Camassola, M., & Dillon, A. J. P. (2022). Comparison of liquid hot water and saturated steam pretreatments to evaluate the enzymatic hydrolysis yield of elephant grass. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-022-02939-7

Vargas, A. C. G., Dresch, A. P., Schmidt, A. R., Tadioto, V., Giehl, A., Fogolari, O., Mibielli, G. M., Alves, S. L., & Bender, J. P. (2023). Batch Fermentation of Lignocellulosic Elephant Grass Biomass for 2G Ethanol and Xylitol Production. Bioenergy Research, 0123456789. https://doi.org/10.1007/s12155-022-10559-2

Vieira, S. (2021). Introdução à bioestatística. Editora GEN/Guanabara Koogan.

Woiciechowski, A. L., Dalmas Neto, C. J., Porto de Souza Vandenberghe, L., de Carvalho Neto, D. P., Novak Sydney, A. C., Letti, L. A. J., Karp, S. G., Zevallos Torres, L. A., & Soccol, C. R. (2020). Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology, 304(January), 122848. https://doi.org/10.1016/j.biortech.2020.122848

Xu, J., Li, C., Dai, L., Xu, C., Zhong, Y., Yu, F., & Si, C. (2020). Biomass Fractionation and Lignin Fractionation towards Lignin Valorization. ChemSusChem, 13(17), 4284–4295. https://doi.org/10.1002/CSSC.202001491

Yuan, J., Liu, G., Liu, P., Huang, R., yuan, J., Liu, G., Liu, P., & Huang, R. (2024). Comprehensive assessment of elephant grass (Pennisetum purpureum) stalks at different growth stages as raw materials for nanocellulose production. Tropical Plants 2024 1:e013, 3(1), 0–0. https://doi.org/10.48130/TP-0024-0013

Downloads

Published

2025-07-30

Issue

Section

Agrarian and Biological Sciences

How to Cite

Analysis of biomass yield and chemical composition of elephant grass at different growth stages. Research, Society and Development, [S. l.], v. 14, n. 7, p. e9814749300, 2025. DOI: 10.33448/rsd-v14i7.49300. Disponível em: https://rsdjournal.org/rsd/article/view/49300. Acesso em: 5 dec. 2025.