Análisis de la producción de biomasa y la composición química del pasto elefante en diferentes etapas de crecimiento
DOI:
https://doi.org/10.33448/rsd-v14i7.49300Palabras clave:
Hojas, Tallos, Celulosa, Hemicelulosa, Lignina.Resumen
Las condiciones de siembra y el momento de la cosecha influyen significativamente en la composición morfológica y la calidad del pasto elefante. El objetivo de este estudio fue evaluar la producción de materia seca y los cambios en la composición del pasto elefante en términos de contenido de cenizas, extractivos, proteínas, lignina, celulosa y hemicelulosa en diferentes etapas de crecimiento (60 días, 90 días, 120 días y 60 días de rebrote) con el fin de recomendar períodos de cosecha ideales para aplicaciones específicas. Durante el período experimental, prevalecieron condiciones climáticas favorables, con temperaturas que oscilaron entre 17.3 °C y 32.2 °C, y una precipitación acumulada de 1,178 mm. El contenido de cenizas disminuyó del 7.2% a los 60 días al 4.8% a los 120 días, mientras que el contenido de lignina aumentó significativamente del 16.9% al 32.7%, reflejando cambios estructurales asociados a la madurez de la planta. Con base en estos hallazgos, se recomiendan intervalos de cosecha más cortos (por ejemplo, 60 días o rebrote de 60 días) para la generación de energía y la producción de forraje debido al menor contenido de cenizas y mayor biodegradabilidad. En contraste, los períodos de crecimiento más prolongados (por ejemplo, 90–120 días) son más adecuados para aplicaciones que requieren mayores fracciones de celulosa, hemicelulosa y lignina en biorrefinerías lignocelulósicas.
Referencias
An, L., Si, C., Wang, G., Sui, W., & Tao, Z. (2019). Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Industrial Crops and Products, 128 (September 2018), 177–185. https://doi.org/10.1016/j.indcrop.2018.11.009
Boschiero, B. N., Castro, S. G. Q. de, da Cruz, L. P., Carvalho, J. L. N., Silva, S. R., Bressiani, J. A., & Kölln, O. T. (2023). Biomass yield, nutrient removal, and chemical composition of energy cane genotypes in Southeast Brazil. Industrial Crops and Products, 191, 115993. https://doi.org/10.1016/J.INDCROP.2022.115993
Dresch, A. P., Cavali, M., dos Santos, D. F., Fogolari, O., Pinto, V. Z., Mibielli, G. M., & Bender, J. P. (2023). Different treatments of pearl millet biomass for cellulose recovery: Effects on lignocellulosic composition. Cellulose Chemistry and Technology, 57(3–4), 227–236. https://doi.org/10.35812/cellulosechemtechnol.2023.57.22
Dresch, A. P., Schmidt, A. R., Cavali, M., Silva, G. B. da, Fogolari, O., Manica, D., Domingos, D. G., Bagatini, M. D., Pinto, V. Z., Alves Júnior, S. L. MIBIELLI, G. M., BENDER, J. P., & TELEKEN, J. G. (2025). Valorization of elephant grass biomass: Ethanol production from cellulose fraction and anticancer application of lignin. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-025-06583-9
EPAGRI. (2024). EPAGRI/CIRAM - AGROCONNECT [WWW Document]. https://ciram.epagri.sc.gov.br/agroconnect/
Fahey, G. C., Novotny, L., Layton, B., & Mertens, D. R. (2019). Critical factors in determining fiber content of feeds and foods and their ingredients. Journal of AOAC International, 102(1), 52–62. https://doi.org/10.5740/JAOACINT.18-0067
Fedenko, J. R., Erickson, J. E., Woodard, K. R., Sollenberger, L. E., Vendramini, J. M. B., Gilbert, R. A., Helsel, Z. R., & Peter, G. F. (2013). Biomass production and composition of perennial grasses grown for bioenergy in a subtropical climate across Florida, USA. Bioenergy Research, 6(3), 1082–1093. https://doi.org/10.1007/S12155-013-9342-3/
Ferreira, S. D., Manera, C., Silvestre, W. P., Pauletti, G. F., Altafini, C. R., & Godinho, M. (2019). Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste and Biomass Valorization, 10(10), 3089–3100. https://doi.org/10.1007/S12649-018-0347-1/
Flores, R. A., Urquiaga, S., Alves, B. J. R., Collier, L. S., & Boddey, R. M. (2012). Yield and quality of elephant grass biomass produced in the Cerrados region for bioenergy. Engenharia Agrícola, 32(5), 831–839. https://doi.org/10.1590/S0100-69162012000500003
Freitas, R., Da Costa Barbé, T., Figueiredo Daher, R., Kesia, A., Vidal, F., Stida, W. F., Brito Da Silva, V., Rafaela Da, B., Menezes, S., & Pereira, A. Vander. (2017). Chemical Composition and Energy Yield of Elephant-Grass Biomass as Function of Five Different Production Ages. Journal of Agricultural Science, 10(1), p343. https://doi.org/10.5539/JAS.V10N1P343
Ivanova, D., Nikolova, G., Karamalakova, Y., Semkova, S., Marutsova, V., & Yaneva, Z. (2023). Water-soluble alkali lignin as a natural radical scavenger and anticancer alternative. International Journal of Molecular Sciences, 24(16). https://doi.org/10.3390/
Iyyappan, J., Pravin, R., Al-Ghanim, K. A., Govindarajan, M., Nicoletti, M., & Baskar, G. (2023). Dual strategy for bioconversion of elephant grass biomass into fermentable sugars using Trichoderma reesei towards bioethanol production. Bioresource Technology, 374, 128804. https://doi.org/10.1016/j.biortech.2023.128804
Johannes, L. P., Minh, T. T. N., & Xuan, T. D. (2024). Elephant grass (Pennisetum purpureum): A bioenergy resource overview. Biomass, 4(3), 625–646. https://doi.org/10.3390/BIOMASS4030034
Lang, M., & Li, H. (2022). Toward value-added arenes from lignin-derived phenolic compounds via catalytic hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 10(40), 13208–13243. https://doi.org/10.1021/acssuschemeng.2c04266
Lee, M. K., Tsai, W. T., Tsai, Y. L., & Lin, S. H. (2010). Pyrolysis of napier grass in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 88(2), 110–116. https://doi.org/10.1016/J.JAAP.2010.03.003
Lucaroni, A. C., Dresch, A. P., Fogolari, O., Giehl, A., Treichel, H., Bender, J. P., Mibielli, G. M., & Alves Júnior, S. L. (2022). Effects of Temperature and pH on Salt-Stressed Yeast Cultures in Non-Detoxified Coconut Hydrolysate. Industrial Biotechnology, 18(4). https://doi.org/10.1089/ind.2021.0029
Marafon, A. C., Amaral, A. F. C., Machado, J. C., Carneiro, J. da C., Bierhals, A. N., & Guimarães, V. dos S. (2021). Chemical composition and calorific value of elephant grass varieties and other feedstocks intended for direct combustion. Grassland Science, 67(3), 241–249. https://doi.org/10.1111/GRS.12311
Na, C. I., Sollenberger, L. E., Fedenko, J. R., Erickson, J. E., & Woodard, K. R. (2016). Seasonal changes in chemical composition and leaf proportion of elephantgrass and energycane biomass. Industrial Crops and Products, 94, 107–116. https://doi.org/10.1016/J.INDCROP.2016.07.009
Nobel, P. S. (2017). Basic water relations. Encyclopedia of Applied Plant Sciences, 1, 105–109. https://doi.org/10.1016/B978-0-12-394807-6.00070-8
Peixoto, A. da S., de Jesus dos Santos, E., Schwartz, G., Santos Moreira, H. K., da Cruz, B. E. P., Cruz, L. N., Almeida Pereira, R. de, Bardales Lozano, R. M., & Silva Dionisio, L. F. (2024). Nutritional value of elephant grass in response to different harvest times in Roraima state, Brazil. Semina: Ciências Agrárias, 46(1), 7–22. https://doi.org/10.5433/1679-0359.2025v46n1p7
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [e-book gratuito]. Editora da UFSM. https://repositorio.ufsm.br/handle/1/15824
Pereira, A. Vander, De Andrade Lira, M., Machado, J. C., De Miranda Gomide, C. A., Martins, C. E., Da Silva Lédo, F. J., & Daher, R. F. (2021). Elephantgrass, a tropical grass for cutting and grazing. Revista Brasileirade Ciencias Agrarias, 16(2). https://doi.org/10.5039/AGRARIA.V16I3A9317
Rengsirikul, K., Ishii, Y., Kangvansaichol, K., Pripanapong, P., Sripichitt, P., Punsuvon, V., Vaithanomsat, P., Nakamanee, G., & Tudsri, S. (2011). Effects of inter-cutting interval on biomass yield, growth components and chemical composition of napiergrass (Pennisetum purpureum Schumach) cultivars as bioenergy crops in Thailand. Grassland Science, 57(3), 135–141. https://doi.org/10.1111/J.1744-697X.2011.00220.X
Rueda, J. A., Guerrero-Rodríguez, J. de D., Ramírez-Ordoñes, S., Aguilar-Martínez, C. U., Hernández-Montiel, W., & Ortega-Jiménez, E. (2020). Morphological composition and fiber partitioning along regrowth in elephant grass CT115 intended for ethanol production. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-72169-2
Schmidt, A. R., Dresch, A. P., Alves Júnior, S. L., Bender, J. P., & Treichel, H. (2023). Applications of Brewer’s Spent Grain Hemicelluloses in Biorefineries: Extraction and Value-Added Product Obtention. Catalysts, 13(4), 1–23. https://doi.org/10.3390/catal13040755
Schmidt, A. R., Dresch, A. P., Marth, J., Giehl, A., Fogolari, O., Dallago, R. M., Treichel, H., Mibielli, G. M., Alves Junior, S. L., & Bender, J. P. (2025). Impact of Oxalic Acid Pretreatment on the Solubility and Fermentability of Hemicelluloses in Brewer’s Spent Grain. Industrial Biotechnology. https://doi.org/10.1089/ind.2024.0045
Scopel, E., Camargos, C. H. M., Pinto, L. O., Trevisan, H., Ferreira, E. S., & Rezende, C. A. (2023). Broadening the product portfolio with cellulose and lignin nanoparticles in an elephant grass biorefinery. Biofuels, Bioproducts and Biorefining, 17(4), 859–872. https://doi.org/10.1002/BBB.2476
Scopel, E., & Rezende, C. A. (2021). Biorefinery on-demand: Modulating pretreatments to recover lignin, hemicellulose, and extractives as co-products during ethanol production. Industrial Crops and Products, 163, 113336. https://doi.org/10.1016/J.INDCROP.2021.113336
Scopel, E., Santos, L. C. dos, Bofinger, M. R., Martínez, J., & Rezende, C. A. (2020). Green extractions to obtain value-added elephant grass co-products in an ethanol biorefinery. Journal of Cleaner Production, 274. https://doi.org/10.1016/j.jclepro.2020.122769
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008a). Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP); Issue Date: 7/17/2005.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of structural carbohydrates and lignin in Biomass—NREL/TP-510-42618. Laboratory Analytical Procedure (LAP), April 2008, 17.
Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008b). Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Issue Date 7/17/2005.
Sousa, L. B. de, Daher, R. F., Da Silva Menezes, B. R., Rodrigues, E. V., Tardin, F. D., De Amaral Gravina, G., & Vander Pereira, A. (2016). Qualidade da biomassa em híbridos de capim-elefante para fins energéticos. Revista Brasileira de Ciências Agrárias, 11(2), 85–91. https://doi.org/10.5039/AGRARIA.V11I2A5370
Takara, D., & Khanal, S. K. (2015). Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential. Bioresource Technology, 188, 103–108. https://doi.org/10.1016/J.BIORTECH.2015.01.114
Tanganini, I. C., Camargos, C. H. . M., Jackson, J. C., Rezende, C. A., Ceccato-Antonini, S. R., & Faria, A. F. (2024). Self-assembled lignin nanoparticles produced from elephant grass leaves enable selective inactivation of Gram-positive microorganisms. RSC Sustainability, November 2023, 1–45. https://doi.org/10.1039/D3SU00400G
Toscan, A., Fontana, R. C., Camassola, M., & Dillon, A. J. P. (2022). Comparison of liquid hot water and saturated steam pretreatments to evaluate the enzymatic hydrolysis yield of elephant grass. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-022-02939-7
Vargas, A. C. G., Dresch, A. P., Schmidt, A. R., Tadioto, V., Giehl, A., Fogolari, O., Mibielli, G. M., Alves, S. L., & Bender, J. P. (2023). Batch Fermentation of Lignocellulosic Elephant Grass Biomass for 2G Ethanol and Xylitol Production. Bioenergy Research, 0123456789. https://doi.org/10.1007/s12155-022-10559-2
Vieira, S. (2021). Introdução à bioestatística. Editora GEN/Guanabara Koogan.
Woiciechowski, A. L., Dalmas Neto, C. J., Porto de Souza Vandenberghe, L., de Carvalho Neto, D. P., Novak Sydney, A. C., Letti, L. A. J., Karp, S. G., Zevallos Torres, L. A., & Soccol, C. R. (2020). Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology, 304(January), 122848. https://doi.org/10.1016/j.biortech.2020.122848
Xu, J., Li, C., Dai, L., Xu, C., Zhong, Y., Yu, F., & Si, C. (2020). Biomass Fractionation and Lignin Fractionation towards Lignin Valorization. ChemSusChem, 13(17), 4284–4295. https://doi.org/10.1002/CSSC.202001491
Yuan, J., Liu, G., Liu, P., Huang, R., yuan, J., Liu, G., Liu, P., & Huang, R. (2024). Comprehensive assessment of elephant grass (Pennisetum purpureum) stalks at different growth stages as raw materials for nanocellulose production. Tropical Plants 2024 1:e013, 3(1), 0–0. https://doi.org/10.48130/TP-0024-0013
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Aline Perin Dresch, Kaillany Eduarda Gonçalves Lipes, Siumar Pedro Tironi, Odinei Fogolari, Guilherme Martinez Mibielli, João Paulo Bender, Joel Gustavo Teleken

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.
