Chimeric Antigen Receptor (CAR) Immunotherapy for Natural Killer (NK) cells, therapeutic approaches and future perspectives in the oncological field: a systematic review of Synthesis Without Meta-analysis (SWIM)
DOI:
https://doi.org/10.33448/rsd-v14i8.49317Keywords:
Adoptive Cell Therapy, Natural Killer Cells, Chimeric Antigen Receptor Therapy, Chimeric Antigen Receptors, Oncology.Abstract
CAR-T cell immunotherapy, despite its success in hematological malignancies, is limited by significant toxicities and high production costs. CAR-NK immunotherapy emerges as an alternative, with the potential for safer and more accessible "off-the-shelf" allogeneic products. The objective was to critically analyze the evidence on the production, efficacy, challenges, and future perspectives of CAR-NK immunotherapy. A systematic review was conducted using the SWIM (Synthesis Without Meta-analysis) protocol, with the analysis of 83 documents (after applying inclusion and exclusion criteria) analyzed via Bardin's Content Analysis. High efficacy was demonstrated in hematological malignancies, but limited success in solid tumors due to low persistence and suppression by the Tumor Microenvironment (TME). The strategic transition to Induced Pluripotent Stem Cells (iPSCs) is the foundation for producing universal CAR-NK immunotherapies. Overcoming barriers in solid tumors depends on the engineering of multifunctional "armored" CAR-NK cells. This includes the development of "NK-centric" constructs (such as the NKG2D domain), the co-expression of supportive Interleukins (IL-15/IL-21) to increase persistence, and gene editing (via CRISPR-Cas9) to resist TME suppression and metabolic stress (e.g., DRP1 ablation). The integration of these advanced strategies into iPSC platforms is fundamental to consolidating CAR-NK therapy as an accessible and effective pillar in the treatment of cancer and autoimmune diseases. For this, conducting more robust studies is of utmost importance in order to improve the scientific evidence regarding this therapy.
References
Balkhi, S., Zuccolotto, G., Di Spirito, A., Rosato, A., & Mortara, L. (2025). CAR-NK cell therapy: promise and challenges in solid tumors. Frontiers in Immunology, 16, Article 1574742. https://doi.org/10.3389/fimmu.2025.1574742
Bardin, L. (2016). Análise de conteúdo. Edições 70.
Basar, R., Daher, M., & Rezvani, K. (2020). Next-generation cell therapies: the emerging role of CAR-NK cells. Blood Advances, 4(22), 5868–5876. https://doi.org/10.1182/bloodadvances.2020002547
Bergman, H., Sissala, N., HÄgerstrand, H., & Lindqvist, C. (2020). Human NK-92 cells function as target cells for human NK cells - implications for CAR NK-92 therapies. Anticancer Research, 40(10), 5355–5359. https://doi.org/10.21873/anticanres.14543
Bexte, T., Botezatu, L., Miskey, C., Gierschek, F., Moter, A., Wendel, P., Reindl, L. M., Campe, J., Villena-Ossa, J. F., Gebel, V., Stein, K., Cathomen, T., Cremer, A., Wels, W. S., Hudecek, M., Ivics, Z., & Ullrich, E. (2024). Engineering of potent CAR NK cells using non-viral Sleeping Beauty transposition from minimalistic DNA vectors. Molecular Therapy: The Journal of the American Society of Gene Therapy, 32(7), 2357–2372. https://doi.org/10.1016/j.ymthe.2024.05.022
Biederstädt, A., & Rezvani, K. (2021). Engineering the next generation of CAR-NK immunotherapies. International Journal of Hematology, 114(5), 554–571. https://doi.org/10.1007/s12185-021-03209-4
Burga, R. A., Yvon, E., Chorvinsky, E., Fernandes, R., Cruz, C. R. Y., & Bollard, C. M. (2019). Engineering the TGFβ receptor to enhance the therapeutic potential of natural killer cells as an immunotherapy for neuroblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25(14), 4400–4412. https://doi.org/10.1158/1078-0432.CCR-18-3183
Burger, M. C., Forster, M.-T., Romanski, A., Straßheimer, F., Macas, J., Zeiner, P. S., Steidl, E., Herkt, S., Weber, K. J., Schupp, J., Lun, J. H., Strecker, M. I., Wlotzka, K., Cakmak, P., Opitz, C., George, R., Mildenberger, I. C., Nowakowska, P., Zhang, C., Wels, W. S. (2023). Intracranial injection of natural killer cells engineered with a HER2-targeted chimeric antigen receptor in patients with recurrent glioblastoma. Neuro-Oncology, 25(11), 2058–2071. https://doi.org/10.1093/neuonc/noad087
Campbell, M., McKenzie, J. E., Sowden, A., Katikireddi, S. V., Brennan, S. E., Ellis, S., Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., & Thomson, H. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ, 368, Article l6890. https://doi.org/10.1136/bmj.l6890
Carfagnini, C., Singh, R., Bechara, S.-B., & Kandula, M. (2024). The Efficacy and Safety of CD-19 Directed CAR-NK Therapy in Adults with B-Cell Malignancies: A Meta-Analysis. Blood, 144 (Supplement 1), 7180. https://doi.org/10.1182/blood-2024-212016
Cifaldi, L., Melaiu, O., Giovannoni, R., Benvenuto, M., Focaccetti, C., Nardozi, D., Barillari, G., & Bei, R. (2023). DNAM-1 chimeric receptor-engineered NK cells: a new frontier for CAR-NK cell-based immunotherapy. Frontiers in Immunology, 14, 1197053. https://doi.org/10.3389/fimmu.2023.1197053
ClinicalTrials.gov. (2024). NKX101, Intravenous Allogeneic CAR NK Cells, in Adults With AML or MDS (NCT04623944). Nkarta, Inc. https://clinicaltrials.gov/study/NCT04623944
Curio, S., Jonsson, G., & Marinović, S. (2021). A summary of current NKG2D-based CAR clinical trials. Immunotherapy Advances, 1(1), Article ltab018. https://doi.org/10.1093/immadv/ltab018
Daher, M., & Rezvani, K. (2018). Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Current Opinion in Immunology, 51, 146–153. https://doi.org/10.1016/j.coi.2018.03.013
Fabbricatore, R. (2025). FT596 shows favorable tolerability, response rate in B-cell lymphoma. Cancer Network.
Fate Therapeutics, Inc. (2024). Anti-ROR1 chimeric antigen receptors (cars), car-nk cells and related methods (Patent No. WO2024073583A1). World Intellectual Property Organization. https://patentscope.wipo.int/search/en/WO2024073583
Ghobadi, A., Bachanova, V., Patel, K., Park, J. H., Flinn, I., Riedell, P. A., Bachier, C., Diefenbach, C. S., Wong, C., Bickers, C., Wong, L., Patel, D., Goodridge, J., Denholt, M., Valamehr, B., Elstrom, R. L., & Strati, P. (2025). Induced pluripotent stem-cell-derived CD19-directed chimeric antigen receptor natural killer cells in B-cell lymphoma: a phase 1, first-in-human trial. Lancet, 405(10473), 127–136. https://doi.org/10.1016/S0140-6736(24)02462-0
Gierschek, F., Schlueter, J., Kühnel, I., Feigl, F. F., Schmiedel, D., Prüfer, M., Buchinger, L., Cerwenka, A., Cappel, C., Huenecke, S., Köhl, U., Wels, W. S., & Ullrich, E. (2024). Empowering Natural Killer Cells to Combat Acute Myeloid Leukemia: Perspective on CAR-NK Cell Therapy. Transfusion Medicine and Hemotherapy, 1–19. https://doi.org/10.1159/000540962
Guedan, S., Calderon, H., Posey, A. D., Jr, & Maus, M. V. (2019). Engineering and design of chimeric antigen receptors. Molecular Therapy. Methods & Clinical Development, 12, 145–156. https://doi.org/10.1016/j.omtm.2018.12.009
Guo, F., Zhang, Y., & Cui, J. (2024). Manufacturing CAR-NK against tumors: Who is the ideal supplier? Chung-Kuo Yen Cheng Yen Chiu [Chinese Journal of Cancer Research], 36(1), 1–16. https://doi.org/10.21147/j.issn.1000-9604.2024.01.01
Guo, J.-H., Afzal, A., Ahmad, S., Saeed, G., Rehman, A., Saddozai, U. A. K., Liu, L., Guo, S.-H., Ji, X.-Y., & Khawar, M. B. (2025). Novel strategies to overcome tumor immunotherapy resistance using CAR NK cells. Frontiers in Immunology, 16, 1550652. https://doi.org/10.3389/fimmu.2025.1550652
Hastings, P. J. (2022). CAR NK cell therapies show preliminary safety and efficacy in AML, non-Hodgkin lymphoma. OncoLive. https://www.onclive.com/view/car-nk-cell-therapies-show-preliminary-safety-and-efficacy-in-aml-non-hodgkin-lymphoma
He, B., Chen, H., Wu, J., Qiu, S., Mai, Q., Zeng, Q., Wang, C., Deng, S., Cai, Z., Liu, X., Xuan, L., Li, C., Zhou, H., Liu, Q., & Xu, N. (2025). Interleukin-21 engineering enhances CD19-specific CAR-NK cell activity against B-cell lymphoma via enriched metabolic pathways. Experimental Hematology & Oncology, 14(1), 51. https://doi.org/10.1186/s40164-025-00639-2
Hosseini, M.-S., Jahanshahlou, F., Akbarzadeh, M. A., Zarei, M., & Vaez-Gharamaleki, Y. (2024). Formulating research questions for evidence-based studies. Journal of Medicine, Surgery, and Public Health, 2(100046), 100046. https://doi.org/10.1016/j.glmedi.2023.100046
Huang, R., Wang, X., Yan, H., Tan, X., Ma, Y., Wang, M., Han, X., Liu, J., Gao, L., Gao, L., Jing, G., Zhang, C., Wen, Q., & Zhang, X. (2025). Safety and efficacy of CD33-targeted CAR-NK cell therapy for relapsed/refractory AML: preclinical evaluation and phase I trial. Experimental Hematology & Oncology, 14(1), 1. https://doi.org/10.1186/s40164-024-00592-6
Huang, R., Wen, Q., & Zhang, X. (2023). CAR-NK cell therapy for hematological malignancies: recent updates from ASH 2022. Journal of Hematology & Oncology, 16(1), 35. https://doi.org/10.1186/s13045-023-01435-3
Huang, Y., Chen, Y., Shen, J., Xu, Y., Qi, Y., Yang, Z., Zhang, Q., Chen, J., Zhao, W., Hong, J., Hu, J., Jiao, L., Zhu, Q., Wang, L., Zhao, Y., Huang, X., Qin, L., Yao, R., Dai, D., & Li, Y. (2022). A Novel Platform to Manufacture High-Efficient “Off-the-Shelf” CAR-NK Products from Peripheral Blood Mononuclear Cells (PBMC). Blood, 140(Supplement 1), 7409–7410. https://doi.org/10.1182/blood-2022-162937
Hung, C.-F., Xu, X., Li, L., Ma, Y., Jin, Q., Viley, A., Allen, C., Natarajan, P., Shivakumar, R., Peshwa, M. V., & Emens, L. A. (2018). Development of anti-human mesothelin-targeted chimeric antigen receptor messenger RNA-transfected peripheral blood lymphocytes for ovarian cancer therapy. Human Gene Therapy, 29(5), 614–625. https://doi.org/10.1089/hum.2017.080
Huyghe, M., Desterke, C., Imeri, J., Belliard, N., Chaker, D., Oudrirhi, N., Bezerra, H., Turhan, A. G., Bennaceur-Griscelli, A., & Griscelli, F. (2024). Comparative analysis of iPSC-derived NK cells from two differentiation strategies reveals distinct signatures and cytotoxic activities. Frontiers in Immunology, 15, 1463736. https://doi.org/10.3389/fimmu.2024.1463736
Immunomedics Inc. Chang, C.-H., Liu, D., & Goldenberg, D. M. (2016). Disease therapy with chimeric antigen receptor (car) constructs and t cells (car-t) or nk cells (car-nk) expressing car constructs (Patent No. WO2016201300A1). World Intellectual Property Organization. https://patentscope.wipo.int/search/en/WO2016201300
Jørgensen, L. V., Christensen, E. B., Barnkob, M. B., & Barington, T. (2025). The clinical landscape of CAR NK cells. Experimental Hematology & Oncology, 14(1), 46. https://doi.org/10.1186/s40164-025-00633-8
Kanner, S. (2022, December 12). Caribou Biosciences selects ROR1 as the target for CB-020, an iPSC-derived allogeneic CAR-NK cell therapy. Caribou Biosciences, Inc. https://investor.cariboubio.com/news-releases/news-release-details/caribou-biosciences-selects-ror1-target-cb-020-ipsc-derived/
Karamivandishi, A., Hatami, A., Eslami, M. M., Soleimani, M., & Izadi, N. (2025). Chimeric antigen receptor natural killer cell therapy: A systematic review of preclinical studies for hematologic and solid malignancies. Human Immunology, 86, 111207. https://doi.org/10.1016/j.humimm.2024.111207
Khan, S. H., Choi, Y., Veena, M., Lee, J. K., & Shin, D. S. (2024). Advances in CAR T cell therapy: antigen selection, modifications, and current trials for solid tumors. Frontiers in Immunology, 15, 1489827. https://doi.org/10.3389/fimmu.2024.1489827
Khorasani, B. S., Yousefi, A., A.-M., & Bashash, D. (2022). CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. International Immunopharmacology, 110(109041), Article 109041. https://doi.org/10.1016/j.intimp.2022.109041
Kilgour, M. K., Bastin, D. J., Lee, S.-H., Ardolino, M., McComb, S., & Visram, A. (2023). Advancements in CAR-NK therapy: lessons to be learned from CAR-T therapy. Frontiers in Immunology, 14, 1166038. https://doi.org/10.3389/fimmu.2023.1166038
Kong, J. C., Sa’ad, M. A., Vijayan, H. M., Ravichandran, M., Balakrishnan, V., Tham, S. K., & Tye, G. J. (2024). Chimeric antigen receptor-natural killer cell therapy: current advancements and strategies to overcome challenges. Frontiers in Immunology, 15, 1384039. https://doi.org/10.3389/fimmu.2024.1384039
Krug, A., Martinez-Turtos, A., & Verhoeyen, E. (2021). Importance of T, NK, CAR T and CAR NK cell metabolic fitness for effective anti-cancer therapy: A continuous learning process allowing the optimization of T, NK and CAR-based anti-cancer therapies. Cancers, 14(1), 183. https://doi.org/10.3390/cancers14010183
Lamers-Kok, N., Panella, D., Georgoudaki, A.-M., Liu, H., Özkazanc, D., Kučerová, L., Duru, A. D., Spanholtz, J., & Raimo, M. (2022). Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. Journal of Hematology & Oncology, 15(1), 164. https://doi.org/10.1186/s13045-022-01382-5
Lee, E., Kim, J., Kim, S., Jung, M., Kim, Y., Jeon, Y., & Won, S. (2024). Preclinical Evaluation of an Allogeneic CD22 CAR-NK to Target B-Cell Hematologic Malignancies. Blood, 144 (Supplement 1), 7187–7187. https://doi.org/10.1182/blood-2024-198589
Lei, W., Liu, H., Deng, W., Chen, W., Liang, Y., Gao, W., Yuan, X., Guo, S., Li, P., Wang, J., Tong, X., Sun, Y. E., Liang, A., & Qian, W. (2025). Safety and feasibility of 4-1BB co-stimulated CD19-specific CAR-NK cell therapy in refractory/relapsed large B cell lymphoma: a phase 1 trial. Nature Cancer, 6(5), 786–800. https://doi.org/10.1038/s43018-025-00940-3
Li, H., Song, W., Li, Z., & Zhang, M. (2022). Preclinical and clinical studies of CAR-NK-cell therapies for malignancies. Frontiers in Immunology, 13, 992232. https://doi.org/10.3389/fimmu.2022.992232
Li, J., Hu, H., Lian, K., Zhang, D., Hu, P., He, Z., Zhang, Z., & Wang, Y. (2024). CAR-NK cells in combination therapy against cancer: A potential paradigm. Heliyon, 10(5), e27196. https://doi.org/10.1016/j.heliyon.2024.e27196
Li, L., Mohanty, V., Dou, J., Huang, Y., Banerjee, P. P., Miao, Q., Lohr, J. G., Vijaykumar, T., Frede, J., Knoechel, B., Muniz-Feliciano, L., Laskowski, T. J., Liang, S., Moyes, J. S., Nandivada, V., Basar, R., Kaplan, M., Daher, M., Liu, E., Rezvani, K. (2023). Loss of metabolic fitness drives tumor resistance after CAR-NK cell therapy and can be overcome by cytokine engineering. Science Advances, 9(30), eadd6997. https://doi.org/10.1126/sciadv.add6997
Li, T., Niu, M., Zhang, W., Qin, S., Zhou, J., & Yi, M. (2024). CAR-NK cells for cancer immunotherapy: recent advances and future directions. Frontiers in Immunology, 15, 1361194. https://doi.org/10.3389/fimmu.2024.1361194
Li, W., Feng, J., Peng, J., Zhang, X., Aziz, A. U. R., & Wang, D. (2024). Chimeric antigen receptor-natural killer (CAR-NK) cell immunotherapy: A bibliometric analysis from 2004 to 2023. Human Vaccines & Immunotherapeutics, 20(1), 2415187. https://doi.org/10.1080/21645515.2024.2415187
Li, W., Wang, X., Zhang, X., Aziz, A. U. R., & Wang, D. (2024). CAR-NK cell therapy: A transformative approach to overcoming oncological challenges. Biomolecules, 14(8), 1035. https://doi.org/10.3390/biom14081035
Lin, X., Guan, T., Li, Y., Lin, Y., Huang, G., Lin, Y., Sun, P., Li, C., Gu, J., Zeng, H., & Ma, C. (2024). Efficacy of MUC1-targeted CAR-NK cells against human tongue squamous cell carcinoma. Frontiers in Immunology, 15, 1337557. https://doi.org/10.3389/fimmu.2024.1337557
Liu, E., Marin, D., Banerjee, P., Macapinlac, H. A., Thompson, P., Basar, R., Nassif Kerbauy, L., Overman, B., Thall, P., Kaplan, M., Nandivada, V., Kaur, I., Nunez Cortes, A., Cao, K., Daher, M., Hosing, C., Cohen, E. N., Kebriaei, P., Mehta, R., Rezvani, K. (2020). Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. The New England Journal of Medicine, 382(6), 545–553. https://doi.org/10.1056/NEJMoa1910607
Lu, H., Zhao, X., Li, Z., Hu, Y., & Wang, H. (2021). From CAR-T cells to CAR-NK cells: A developing immunotherapy method for hematological malignancies. Frontiers in Oncology, 11, 720501. https://doi.org/10.3389/fonc.2021.720501
Lu, S.-J., & Feng, Q. (2021). CAR-NK cells from engineered pluripotent stem cells: Off-the-shelf therapeutics for all patients. Stem Cells Translational Medicine, 10 Suppl 2(S2), S10–S17. https://doi.org/10.1002/sctm.21-0135
Marin, D., Li, Y., Basar, R., Rafei, H., Daher, M., Dou, J., Mohanty, V., Dede, M., Nieto, Y., Uprety, N., Acharya, S., Liu, E., Wilson, J., Banerjee, P., Macapinlac, H. A., Ganesh, C., Thall, P. F., Bassett, R., Ammari, M., Rezvani, K. (2024). Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nature Medicine, 30(3), 772–784. https://doi.org/10.1038/s41591-023-02785-8
Matosevic, S. (2018). Viral and nonviral engineering of natural killer cells as emerging adoptive cancer immunotherapies. Journal of Immunology Research, 2018, 4054815. https://doi.org/10.1155/2018/4054815
Miltenyi Biotec B.V. & Co. KG. Nkure Therapeutics Private Ltd. Roy, R., Shah, V. J., Battu, A. R., & Gopurappilly, R. (2024). Method for expansion and maintenance of nk cells for immunotherapy (Patent No. US20240415892A1). United States Patent and Trademark Office (20240415892A1). https://pubchem.ncbi.nlm.nih.gov/patent/US-2024415892-A1
Pang, Z., Wang, Z., Li, F., Feng, C., & Mu, X. (2022). Current progress of CAR-NK therapy in cancer treatment. Cancers, 14(17), 4318. https://doi.org/10.3390/cancers14174318
Park, E., et al. (2024). CAR NK92 cells targeting BCMA can effectively kill multiple myeloma cells both in vitro and in vivo. Biomedicines, 12(2), Article 273. https://doi.org/10.3390/biomedicines12020273
Park, H., Kim, G., Kim, N., Ha, S., & Yim, H. (2024). Efficacy and safety of natural killer cell therapy in patients with solid tumors: a systematic review and meta-analysis. Frontiers in Immunology, 15, 1454427. https://doi.org/10.3389/fimmu.2024.1454427
Park, J. D., Shin, H. E., An, Y. S., Jang, H. J., Park, J., Kim, S.-N., Park, C. G., & Park, W. (2025). Advancing natural killer cell therapy: Genetic engineering strategies for enhanced cancer immunotherapy. Annals of Laboratory Medicine, 45(2), 146–159. https://doi.org/10.3343/alm.2024.0380
Peng, L., Sferruzza, G., Yang, L., Zhou, L., & Chen, S. (2024). CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cellular & Molecular Immunology, 21(10), 1089–1108. https://doi.org/10.1038/s41423-024-01207-0
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UAB/NTE/UFSM. https://repositorio.ufsm.br/handle/1/15824
Qihan Biotech. (2024). iPSC-CAR-NK cell therapy clinical result published in Cell, marking a global breakthrough in autoimmune disease treatment. BioSpace. https://www.biospace.com/press-releases/ipsc-car-nk-cell-therapy-clinical-result-published-in-cell-marking-a-global-breakthrough-in-autoimmune-disease-treatment
Rafei, H., Daher, M., & Rezvani, K. (2021). Chimeric antigen receptor (CAR) natural killer (NK)-cell therapy: leveraging the power of innate immunity. British Journal of Haematology, 193(2), 216–230. https://doi.org/10.1111/bjh.17186
Rafiq, S. (2024). Keynote presentation: Engineering metabolically fit, memory-rich CAR T cells for treatment of cancer. Labroots. https://www.labroots.com/webinar/keynote-presentation-engineering-metabolically-fit-memory-rich-car-cells-treatment-cancer
Raftery, M. J., Franzén, A. S., & Pecher, G. (2023). CAR NK Cells: The Future is Now. Annual Review of Cancer Biology, 7(1). https://doi.org/10.1146/annurev-cancerbio-061521-082320
Riedell, P. A. (2024). Unlocking the potential of CAR natural killer cell therapy in hematologic malignancies while overcoming challenges. ASCO Daily News. https://dailynews.ascopubs.org/do/unlocking-potential-car-natural-killer-cell-therapy-hematologic-malignancies-while
Salehi-Shadkami, H., Sedghi, M., Tavoosi, S., Alimohammadi, M., Alimohammadi, R., Barkhordar, M., Mofayezi, A., Modaresi, M. S., Vaezi, M., Dehghanizadeh, S., Ahmadvand, M., & Khoddami, V. (2024). Effective targeting of CD19 positive primary B-ALL cells using CAR-NK cells generated with mRNA-LNPs. bioRxiv (p. 2024.11.21.624707). https://doi.org/10.1101/2024.11.21.624707
Senti Bio. (2025). SENTI-202 for the Treatment of Acute Myeloid Leukemia (AML). Pharmacy Times. https://www.sentibio.com/research-pipeline/products/
Shanghai Gene-Optimal Biotech. Li, Z., Jiang, H., Shi, B., & Xu, N. (2024). Chimeric antigen receptor and use thereof (Patent No. WO2024250865A1). World Intellectual Property Organization. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2024250865
Shankar, N. M., Montero, P. O., Kurzyukova, A., Rackwitz, W., Künzel, S. R., Wels, W. S., Tonn, T., Knopf, F., & Eitler, J. (2023). Preclinical assessment of CAR-NK cell-mediated killing efficacy and pharmacokinetics in a rapid zebrafish xenograft model of metastatic breast cancer. bioRxiv. https://doi.org/10.1101/2023.07.11.548344
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Testa, U., Castelli, G., & Pelosi, E. (2025). Emerging role of chimeric antigen receptor-natural killer cells for the treatment of hematologic malignancies. Cancers, 17(9). Article 1454. https://doi.org/10.3390/cancers17091454
UCL Business Ltd. Pulé, M., Anderson, J., & Thomas, S. (2017). Chimeric antigen receptor (CAR) (Patent No. US20170066838A1). United States Patent and Trademark Office. (20170066838A1). https://patents.google.com/patent/US20170066838A1/en
Uhlig, J., Schmiedel, D., Tretbar, U. S., & Dünkel, A. (2025). Advances in the manufacturing of CAR-NK cells for cancer immunotherapy. Methods in Pharmacology and Toxicology (p. 63–81). Springer Nature. https://doi.org/10.1007/978-1-0716-4374-7_4
Valeri, A., García-Ortiz, A., Castellano, E., Córdoba, L., Maroto-Martín, E., Encinas, J., Leivas, A., Río, P., & Martínez-López, J. (2022). Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Frontiers in Immunology, 13, 953849. https://doi.org/10.3389/fimmu.2022.953849
Verhezen, T., Van den Eynde, A., Verstraelen, P., Gehrcken, L., Palmiotto, G., Lau, H. W., De Vos, W., van der Heijden, S., Brants, L., Melis, J., Van Audenaerde, J., Van Laere, S., Lardon, F., Deben, C., Wouters, A., Smits, E., & De Waele, J. (2025). DRP1 depletion protects NK cells against hypoxia-induced dysfunction. Em bioRxiv (p. 2025.06.23.661011). https://doi.org/10.1101/2025.06.23.661011
Wang, M., Krueger, J. B., Gilkey, A. K., Stelljes, E. M., Kluesner, M. G., Pomeroy, E. J., Skeate, J. G., Slipek, N. J., Lahr, W. S., Vázquez, P. N. C., Zhao, Y., Eaton, E. J., Laoharawee, K., Webber, B. R., & Moriarity, B. S. (2024). Precision enhancement of CAR-NK cells through non-viral engineering and highly multiplexed base editing. Em bioRxivorg. https://doi.org/10.1101/2024.03.05.582637
Wittling, M. C., Cole, A. C., Brammer, B., Diatikar, K. G., Schmitt, N. C., & Paulos, C. M. (2024). Strategies for improving CAR T cell persistence in solid tumors. Cancers, 16(16), 2858. https://doi.org/10.3390/cancers16162858
Włodarczyk, M., & Pyrzynska, B. (2022). CAR-NK as a rapidly developed and efficient immunotherapeutic strategy against cancer. Cancers, 15(1), 117. https://doi.org/10.3390/cancers15010117
Wrona, E., Borowiec, M., & Potemski, P. (2021). CAR-NK cells in the treatment of solid tumors. International Journal of Molecular Sciences, 22(11), 5899. https://doi.org/10.3390/ijms22115899
Xia, J., Minamino, S., & Kuwabara, K. (2020). CAR-expressing NK cells for cancer therapy: a new hope. Bioscience Trends, 14(5), 354–359. https://doi.org/10.5582/bst.2020.03308
Xie, G., Dong, H., Liang, Y., Ham, J. D., Rizwan, R., & Chen, J. (2020). CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine, 59(102975), 102975. https://doi.org/10.1016/j.ebiom.2020.102975
Xue, Y. (2023). Limitations and Overcomes of CAR-NK for Cancer Immunotherapy. Highlights in Science, Engineering and Technology, 36, 944–948. https://doi.org/10.54097/hset.v36i.6133
Yang, R., Yang, Y., Liu, R., Wang, Y., Yang, R., & He, A. (2024). Advances in CAR-NK cell therapy for hematological malignancies. Frontiers in Immunology, 15, 1414264. https://doi.org/10.3389/fimmu.2024.1414264
Yu, M., Luo, H., Fan, M., Wu, X., Shi, B., Di, S., Liu, Y., Pan, Z., Jiang, H., & Li, Z. (2018). Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Molecular Therapy: The Journal of the American Society of Gene Therapy, 26(2), 366–378. https://doi.org/10.1016/j.ymthe.2017.12.012
Yu, Y. Kong, R. Xu, X. Liu, S. Chen, C. Li, X. Sun, M. Yang, J. Zhao, D. Gao, J. (2024) Allogenic CD19 CAR NK cells therapy in refractory systemic lupus erythematosus: An open-label, single arm, prospective and interventional clinical trial. ACR Convergence 2024. 76 (suppl 9). https://acrabstracts.org/abstract/allogenic-cd19-car-nk-cells-therapy-in-refractory-systemic-lupus-erythematosus-an-open-label-single-arm-prospective-and-interventional-clinical-trial/
Zanfagnin, V. & Mathur, G. (2022). CAR T-cell therapies: Opportunities and challenges. CAP Today. https://www.cap.org/member-resources/articles/car-t-cells-therapies-opportunities-and-challenges
Zhang, Y., Zhou, W., Yang, J., Yang, J., & Wang, W. (2023). Chimeric antigen receptor engineered natural killer cells for cancer therapy. Experimental Hematology & Oncology, 12(1), 70. https://doi.org/10.1186/s40164-023-00431-0
Zhong, Y., & Liu, J. (2024). Emerging roles of CAR-NK cell therapies in tumor immunotherapy: current status and future directions. Cell Death Discovery, 10(1), 318. https://doi.org/10.1038/s41420-024-02077-1
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Leandro Maia Leão, Josemir de Almeida Lima, Karina Brandão Menezes Lima, Geórgia Maria Ricardo Félix dos Santos, Katharina Jucá de Moraes Fernandes, Bernardo do Rego Belmonte, Jackelyne Oliveira Costa Tenório, Maurício Thiago Gonçalves de Almeida, Roberta Lima, Pollyanna Maria Neves de Melo, Luciana da Silva Viana, Ryvane Chrystine Lopes de Barros

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
