Chimeric Antigen Receptor (CAR) Immunotherapy for Natural Killer (NK) cells, therapeutic approaches and future perspectives in the oncological field: a systematic review of Synthesis Without Meta-analysis (SWIM)

Authors

DOI:

https://doi.org/10.33448/rsd-v14i8.49317

Keywords:

Adoptive Cell Therapy, Natural Killer Cells, Chimeric Antigen Receptor Therapy, Chimeric Antigen Receptors, Oncology.

Abstract

CAR-T cell immunotherapy, despite its success in hematological malignancies, is limited by significant toxicities and high production costs. CAR-NK immunotherapy emerges as an alternative, with the potential for safer and more accessible "off-the-shelf" allogeneic products. The objective was to critically analyze the evidence on the production, efficacy, challenges, and future perspectives of CAR-NK immunotherapy. A systematic review was conducted using the SWIM (Synthesis Without Meta-analysis) protocol, with the analysis of 83 documents (after applying inclusion and exclusion criteria) analyzed via Bardin's Content Analysis. High efficacy was demonstrated in hematological malignancies, but limited success in solid tumors due to low persistence and suppression by the Tumor Microenvironment (TME). The strategic transition to Induced Pluripotent Stem Cells (iPSCs) is the foundation for producing universal CAR-NK immunotherapies. Overcoming barriers in solid tumors depends on the engineering of multifunctional "armored" CAR-NK cells. This includes the development of "NK-centric" constructs (such as the NKG2D domain), the co-expression of supportive Interleukins (IL-15/IL-21) to increase persistence, and gene editing (via CRISPR-Cas9) to resist TME suppression and metabolic stress (e.g., DRP1 ablation). The integration of these advanced strategies into iPSC platforms is fundamental to consolidating CAR-NK therapy as an accessible and effective pillar in the treatment of cancer and autoimmune diseases. For this, conducting more robust studies is of utmost importance in order to improve the scientific evidence regarding this therapy.

References

Balkhi, S., Zuccolotto, G., Di Spirito, A., Rosato, A., & Mortara, L. (2025). CAR-NK cell therapy: promise and challenges in solid tumors. Frontiers in Immunology, 16, Article 1574742. https://doi.org/10.3389/fimmu.2025.1574742

Bardin, L. (2016). Análise de conteúdo. Edições 70.

Basar, R., Daher, M., & Rezvani, K. (2020). Next-generation cell therapies: the emerging role of CAR-NK cells. Blood Advances, 4(22), 5868–5876. https://doi.org/10.1182/bloodadvances.2020002547

Bergman, H., Sissala, N., HÄgerstrand, H., & Lindqvist, C. (2020). Human NK-92 cells function as target cells for human NK cells - implications for CAR NK-92 therapies. Anticancer Research, 40(10), 5355–5359. https://doi.org/10.21873/anticanres.14543

Bexte, T., Botezatu, L., Miskey, C., Gierschek, F., Moter, A., Wendel, P., Reindl, L. M., Campe, J., Villena-Ossa, J. F., Gebel, V., Stein, K., Cathomen, T., Cremer, A., Wels, W. S., Hudecek, M., Ivics, Z., & Ullrich, E. (2024). Engineering of potent CAR NK cells using non-viral Sleeping Beauty transposition from minimalistic DNA vectors. Molecular Therapy: The Journal of the American Society of Gene Therapy, 32(7), 2357–2372. https://doi.org/10.1016/j.ymthe.2024.05.022

Biederstädt, A., & Rezvani, K. (2021). Engineering the next generation of CAR-NK immunotherapies. International Journal of Hematology, 114(5), 554–571. https://doi.org/10.1007/s12185-021-03209-4

Burga, R. A., Yvon, E., Chorvinsky, E., Fernandes, R., Cruz, C. R. Y., & Bollard, C. M. (2019). Engineering the TGFβ receptor to enhance the therapeutic potential of natural killer cells as an immunotherapy for neuroblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25(14), 4400–4412. https://doi.org/10.1158/1078-0432.CCR-18-3183

Burger, M. C., Forster, M.-T., Romanski, A., Straßheimer, F., Macas, J., Zeiner, P. S., Steidl, E., Herkt, S., Weber, K. J., Schupp, J., Lun, J. H., Strecker, M. I., Wlotzka, K., Cakmak, P., Opitz, C., George, R., Mildenberger, I. C., Nowakowska, P., Zhang, C., Wels, W. S. (2023). Intracranial injection of natural killer cells engineered with a HER2-targeted chimeric antigen receptor in patients with recurrent glioblastoma. Neuro-Oncology, 25(11), 2058–2071. https://doi.org/10.1093/neuonc/noad087

Campbell, M., McKenzie, J. E., Sowden, A., Katikireddi, S. V., Brennan, S. E., Ellis, S., Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., & Thomson, H. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ, 368, Article l6890. https://doi.org/10.1136/bmj.l6890

Carfagnini, C., Singh, R., Bechara, S.-B., & Kandula, M. (2024). The Efficacy and Safety of CD-19 Directed CAR-NK Therapy in Adults with B-Cell Malignancies: A Meta-Analysis. Blood, 144 (Supplement 1), 7180. https://doi.org/10.1182/blood-2024-212016

Cifaldi, L., Melaiu, O., Giovannoni, R., Benvenuto, M., Focaccetti, C., Nardozi, D., Barillari, G., & Bei, R. (2023). DNAM-1 chimeric receptor-engineered NK cells: a new frontier for CAR-NK cell-based immunotherapy. Frontiers in Immunology, 14, 1197053. https://doi.org/10.3389/fimmu.2023.1197053

ClinicalTrials.gov. (2024). NKX101, Intravenous Allogeneic CAR NK Cells, in Adults With AML or MDS (NCT04623944). Nkarta, Inc. https://clinicaltrials.gov/study/NCT04623944

Curio, S., Jonsson, G., & Marinović, S. (2021). A summary of current NKG2D-based CAR clinical trials. Immunotherapy Advances, 1(1), Article ltab018. https://doi.org/10.1093/immadv/ltab018

Daher, M., & Rezvani, K. (2018). Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Current Opinion in Immunology, 51, 146–153. https://doi.org/10.1016/j.coi.2018.03.013

Fabbricatore, R. (2025). FT596 shows favorable tolerability, response rate in B-cell lymphoma. Cancer Network.

https://www.cancernetwork.com/view/ft596-shows-favorable-tolerability-response-rate-in-b-cell-lymphoma

Fate Therapeutics, Inc. (2024). Anti-ROR1 chimeric antigen receptors (cars), car-nk cells and related methods (Patent No. WO2024073583A1). World Intellectual Property Organization. https://patentscope.wipo.int/search/en/WO2024073583

Ghobadi, A., Bachanova, V., Patel, K., Park, J. H., Flinn, I., Riedell, P. A., Bachier, C., Diefenbach, C. S., Wong, C., Bickers, C., Wong, L., Patel, D., Goodridge, J., Denholt, M., Valamehr, B., Elstrom, R. L., & Strati, P. (2025). Induced pluripotent stem-cell-derived CD19-directed chimeric antigen receptor natural killer cells in B-cell lymphoma: a phase 1, first-in-human trial. Lancet, 405(10473), 127–136. https://doi.org/10.1016/S0140-6736(24)02462-0

Gierschek, F., Schlueter, J., Kühnel, I., Feigl, F. F., Schmiedel, D., Prüfer, M., Buchinger, L., Cerwenka, A., Cappel, C., Huenecke, S., Köhl, U., Wels, W. S., & Ullrich, E. (2024). Empowering Natural Killer Cells to Combat Acute Myeloid Leukemia: Perspective on CAR-NK Cell Therapy. Transfusion Medicine and Hemotherapy, 1–19. https://doi.org/10.1159/000540962

Guedan, S., Calderon, H., Posey, A. D., Jr, & Maus, M. V. (2019). Engineering and design of chimeric antigen receptors. Molecular Therapy. Methods & Clinical Development, 12, 145–156. https://doi.org/10.1016/j.omtm.2018.12.009

Guo, F., Zhang, Y., & Cui, J. (2024). Manufacturing CAR-NK against tumors: Who is the ideal supplier? Chung-Kuo Yen Cheng Yen Chiu [Chinese Journal of Cancer Research], 36(1), 1–16. https://doi.org/10.21147/j.issn.1000-9604.2024.01.01

Guo, J.-H., Afzal, A., Ahmad, S., Saeed, G., Rehman, A., Saddozai, U. A. K., Liu, L., Guo, S.-H., Ji, X.-Y., & Khawar, M. B. (2025). Novel strategies to overcome tumor immunotherapy resistance using CAR NK cells. Frontiers in Immunology, 16, 1550652. https://doi.org/10.3389/fimmu.2025.1550652

Hastings, P. J. (2022). CAR NK cell therapies show preliminary safety and efficacy in AML, non-Hodgkin lymphoma. OncoLive. https://www.onclive.com/view/car-nk-cell-therapies-show-preliminary-safety-and-efficacy-in-aml-non-hodgkin-lymphoma

He, B., Chen, H., Wu, J., Qiu, S., Mai, Q., Zeng, Q., Wang, C., Deng, S., Cai, Z., Liu, X., Xuan, L., Li, C., Zhou, H., Liu, Q., & Xu, N. (2025). Interleukin-21 engineering enhances CD19-specific CAR-NK cell activity against B-cell lymphoma via enriched metabolic pathways. Experimental Hematology & Oncology, 14(1), 51. https://doi.org/10.1186/s40164-025-00639-2

Hosseini, M.-S., Jahanshahlou, F., Akbarzadeh, M. A., Zarei, M., & Vaez-Gharamaleki, Y. (2024). Formulating research questions for evidence-based studies. Journal of Medicine, Surgery, and Public Health, 2(100046), 100046. https://doi.org/10.1016/j.glmedi.2023.100046

Huang, R., Wang, X., Yan, H., Tan, X., Ma, Y., Wang, M., Han, X., Liu, J., Gao, L., Gao, L., Jing, G., Zhang, C., Wen, Q., & Zhang, X. (2025). Safety and efficacy of CD33-targeted CAR-NK cell therapy for relapsed/refractory AML: preclinical evaluation and phase I trial. Experimental Hematology & Oncology, 14(1), 1. https://doi.org/10.1186/s40164-024-00592-6

Huang, R., Wen, Q., & Zhang, X. (2023). CAR-NK cell therapy for hematological malignancies: recent updates from ASH 2022. Journal of Hematology & Oncology, 16(1), 35. https://doi.org/10.1186/s13045-023-01435-3

Huang, Y., Chen, Y., Shen, J., Xu, Y., Qi, Y., Yang, Z., Zhang, Q., Chen, J., Zhao, W., Hong, J., Hu, J., Jiao, L., Zhu, Q., Wang, L., Zhao, Y., Huang, X., Qin, L., Yao, R., Dai, D., & Li, Y. (2022). A Novel Platform to Manufacture High-Efficient “Off-the-Shelf” CAR-NK Products from Peripheral Blood Mononuclear Cells (PBMC). Blood, 140(Supplement 1), 7409–7410. https://doi.org/10.1182/blood-2022-162937

Hung, C.-F., Xu, X., Li, L., Ma, Y., Jin, Q., Viley, A., Allen, C., Natarajan, P., Shivakumar, R., Peshwa, M. V., & Emens, L. A. (2018). Development of anti-human mesothelin-targeted chimeric antigen receptor messenger RNA-transfected peripheral blood lymphocytes for ovarian cancer therapy. Human Gene Therapy, 29(5), 614–625. https://doi.org/10.1089/hum.2017.080

Huyghe, M., Desterke, C., Imeri, J., Belliard, N., Chaker, D., Oudrirhi, N., Bezerra, H., Turhan, A. G., Bennaceur-Griscelli, A., & Griscelli, F. (2024). Comparative analysis of iPSC-derived NK cells from two differentiation strategies reveals distinct signatures and cytotoxic activities. Frontiers in Immunology, 15, 1463736. https://doi.org/10.3389/fimmu.2024.1463736

Immunomedics Inc. Chang, C.-H., Liu, D., & Goldenberg, D. M. (2016). Disease therapy with chimeric antigen receptor (car) constructs and t cells (car-t) or nk cells (car-nk) expressing car constructs (Patent No. WO2016201300A1). World Intellectual Property Organization. https://patentscope.wipo.int/search/en/WO2016201300

Jørgensen, L. V., Christensen, E. B., Barnkob, M. B., & Barington, T. (2025). The clinical landscape of CAR NK cells. Experimental Hematology & Oncology, 14(1), 46. https://doi.org/10.1186/s40164-025-00633-8

Kanner, S. (2022, December 12). Caribou Biosciences selects ROR1 as the target for CB-020, an iPSC-derived allogeneic CAR-NK cell therapy. Caribou Biosciences, Inc. https://investor.cariboubio.com/news-releases/news-release-details/caribou-biosciences-selects-ror1-target-cb-020-ipsc-derived/

Karamivandishi, A., Hatami, A., Eslami, M. M., Soleimani, M., & Izadi, N. (2025). Chimeric antigen receptor natural killer cell therapy: A systematic review of preclinical studies for hematologic and solid malignancies. Human Immunology, 86, 111207. https://doi.org/10.1016/j.humimm.2024.111207

Khan, S. H., Choi, Y., Veena, M., Lee, J. K., & Shin, D. S. (2024). Advances in CAR T cell therapy: antigen selection, modifications, and current trials for solid tumors. Frontiers in Immunology, 15, 1489827. https://doi.org/10.3389/fimmu.2024.1489827

Khorasani, B. S., Yousefi, A., A.-M., & Bashash, D. (2022). CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. International Immunopharmacology, 110(109041), Article 109041. https://doi.org/10.1016/j.intimp.2022.109041

Kilgour, M. K., Bastin, D. J., Lee, S.-H., Ardolino, M., McComb, S., & Visram, A. (2023). Advancements in CAR-NK therapy: lessons to be learned from CAR-T therapy. Frontiers in Immunology, 14, 1166038. https://doi.org/10.3389/fimmu.2023.1166038

Kong, J. C., Sa’ad, M. A., Vijayan, H. M., Ravichandran, M., Balakrishnan, V., Tham, S. K., & Tye, G. J. (2024). Chimeric antigen receptor-natural killer cell therapy: current advancements and strategies to overcome challenges. Frontiers in Immunology, 15, 1384039. https://doi.org/10.3389/fimmu.2024.1384039

Krug, A., Martinez-Turtos, A., & Verhoeyen, E. (2021). Importance of T, NK, CAR T and CAR NK cell metabolic fitness for effective anti-cancer therapy: A continuous learning process allowing the optimization of T, NK and CAR-based anti-cancer therapies. Cancers, 14(1), 183. https://doi.org/10.3390/cancers14010183

Lamers-Kok, N., Panella, D., Georgoudaki, A.-M., Liu, H., Özkazanc, D., Kučerová, L., Duru, A. D., Spanholtz, J., & Raimo, M. (2022). Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. Journal of Hematology & Oncology, 15(1), 164. https://doi.org/10.1186/s13045-022-01382-5

Lee, E., Kim, J., Kim, S., Jung, M., Kim, Y., Jeon, Y., & Won, S. (2024). Preclinical Evaluation of an Allogeneic CD22 CAR-NK to Target B-Cell Hematologic Malignancies. Blood, 144 (Supplement 1), 7187–7187. https://doi.org/10.1182/blood-2024-198589

Lei, W., Liu, H., Deng, W., Chen, W., Liang, Y., Gao, W., Yuan, X., Guo, S., Li, P., Wang, J., Tong, X., Sun, Y. E., Liang, A., & Qian, W. (2025). Safety and feasibility of 4-1BB co-stimulated CD19-specific CAR-NK cell therapy in refractory/relapsed large B cell lymphoma: a phase 1 trial. Nature Cancer, 6(5), 786–800. https://doi.org/10.1038/s43018-025-00940-3

Li, H., Song, W., Li, Z., & Zhang, M. (2022). Preclinical and clinical studies of CAR-NK-cell therapies for malignancies. Frontiers in Immunology, 13, 992232. https://doi.org/10.3389/fimmu.2022.992232

Li, J., Hu, H., Lian, K., Zhang, D., Hu, P., He, Z., Zhang, Z., & Wang, Y. (2024). CAR-NK cells in combination therapy against cancer: A potential paradigm. Heliyon, 10(5), e27196. https://doi.org/10.1016/j.heliyon.2024.e27196

Li, L., Mohanty, V., Dou, J., Huang, Y., Banerjee, P. P., Miao, Q., Lohr, J. G., Vijaykumar, T., Frede, J., Knoechel, B., Muniz-Feliciano, L., Laskowski, T. J., Liang, S., Moyes, J. S., Nandivada, V., Basar, R., Kaplan, M., Daher, M., Liu, E., Rezvani, K. (2023). Loss of metabolic fitness drives tumor resistance after CAR-NK cell therapy and can be overcome by cytokine engineering. Science Advances, 9(30), eadd6997. https://doi.org/10.1126/sciadv.add6997

Li, T., Niu, M., Zhang, W., Qin, S., Zhou, J., & Yi, M. (2024). CAR-NK cells for cancer immunotherapy: recent advances and future directions. Frontiers in Immunology, 15, 1361194. https://doi.org/10.3389/fimmu.2024.1361194

Li, W., Feng, J., Peng, J., Zhang, X., Aziz, A. U. R., & Wang, D. (2024). Chimeric antigen receptor-natural killer (CAR-NK) cell immunotherapy: A bibliometric analysis from 2004 to 2023. Human Vaccines & Immunotherapeutics, 20(1), 2415187. https://doi.org/10.1080/21645515.2024.2415187

Li, W., Wang, X., Zhang, X., Aziz, A. U. R., & Wang, D. (2024). CAR-NK cell therapy: A transformative approach to overcoming oncological challenges. Biomolecules, 14(8), 1035. https://doi.org/10.3390/biom14081035

Lin, X., Guan, T., Li, Y., Lin, Y., Huang, G., Lin, Y., Sun, P., Li, C., Gu, J., Zeng, H., & Ma, C. (2024). Efficacy of MUC1-targeted CAR-NK cells against human tongue squamous cell carcinoma. Frontiers in Immunology, 15, 1337557. https://doi.org/10.3389/fimmu.2024.1337557

Liu, E., Marin, D., Banerjee, P., Macapinlac, H. A., Thompson, P., Basar, R., Nassif Kerbauy, L., Overman, B., Thall, P., Kaplan, M., Nandivada, V., Kaur, I., Nunez Cortes, A., Cao, K., Daher, M., Hosing, C., Cohen, E. N., Kebriaei, P., Mehta, R., Rezvani, K. (2020). Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. The New England Journal of Medicine, 382(6), 545–553. https://doi.org/10.1056/NEJMoa1910607

Lu, H., Zhao, X., Li, Z., Hu, Y., & Wang, H. (2021). From CAR-T cells to CAR-NK cells: A developing immunotherapy method for hematological malignancies. Frontiers in Oncology, 11, 720501. https://doi.org/10.3389/fonc.2021.720501

Lu, S.-J., & Feng, Q. (2021). CAR-NK cells from engineered pluripotent stem cells: Off-the-shelf therapeutics for all patients. Stem Cells Translational Medicine, 10 Suppl 2(S2), S10–S17. https://doi.org/10.1002/sctm.21-0135

Marin, D., Li, Y., Basar, R., Rafei, H., Daher, M., Dou, J., Mohanty, V., Dede, M., Nieto, Y., Uprety, N., Acharya, S., Liu, E., Wilson, J., Banerjee, P., Macapinlac, H. A., Ganesh, C., Thall, P. F., Bassett, R., Ammari, M., Rezvani, K. (2024). Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nature Medicine, 30(3), 772–784. https://doi.org/10.1038/s41591-023-02785-8

Matosevic, S. (2018). Viral and nonviral engineering of natural killer cells as emerging adoptive cancer immunotherapies. Journal of Immunology Research, 2018, 4054815. https://doi.org/10.1155/2018/4054815

Miltenyi Biotec B.V. & Co. KG. Nkure Therapeutics Private Ltd. Roy, R., Shah, V. J., Battu, A. R., & Gopurappilly, R. (2024). Method for expansion and maintenance of nk cells for immunotherapy (Patent No. US20240415892A1). United States Patent and Trademark Office (20240415892A1). https://pubchem.ncbi.nlm.nih.gov/patent/US-2024415892-A1

Pang, Z., Wang, Z., Li, F., Feng, C., & Mu, X. (2022). Current progress of CAR-NK therapy in cancer treatment. Cancers, 14(17), 4318. https://doi.org/10.3390/cancers14174318

Park, E., et al. (2024). CAR NK92 cells targeting BCMA can effectively kill multiple myeloma cells both in vitro and in vivo. Biomedicines, 12(2), Article 273. https://doi.org/10.3390/biomedicines12020273

Park, H., Kim, G., Kim, N., Ha, S., & Yim, H. (2024). Efficacy and safety of natural killer cell therapy in patients with solid tumors: a systematic review and meta-analysis. Frontiers in Immunology, 15, 1454427. https://doi.org/10.3389/fimmu.2024.1454427

Park, J. D., Shin, H. E., An, Y. S., Jang, H. J., Park, J., Kim, S.-N., Park, C. G., & Park, W. (2025). Advancing natural killer cell therapy: Genetic engineering strategies for enhanced cancer immunotherapy. Annals of Laboratory Medicine, 45(2), 146–159. https://doi.org/10.3343/alm.2024.0380

Peng, L., Sferruzza, G., Yang, L., Zhou, L., & Chen, S. (2024). CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cellular & Molecular Immunology, 21(10), 1089–1108. https://doi.org/10.1038/s41423-024-01207-0

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UAB/NTE/UFSM. https://repositorio.ufsm.br/handle/1/15824

Qihan Biotech. (2024). iPSC-CAR-NK cell therapy clinical result published in Cell, marking a global breakthrough in autoimmune disease treatment. BioSpace. https://www.biospace.com/press-releases/ipsc-car-nk-cell-therapy-clinical-result-published-in-cell-marking-a-global-breakthrough-in-autoimmune-disease-treatment

Rafei, H., Daher, M., & Rezvani, K. (2021). Chimeric antigen receptor (CAR) natural killer (NK)-cell therapy: leveraging the power of innate immunity. British Journal of Haematology, 193(2), 216–230. https://doi.org/10.1111/bjh.17186

Rafiq, S. (2024). Keynote presentation: Engineering metabolically fit, memory-rich CAR T cells for treatment of cancer. Labroots. https://www.labroots.com/webinar/keynote-presentation-engineering-metabolically-fit-memory-rich-car-cells-treatment-cancer

Raftery, M. J., Franzén, A. S., & Pecher, G. (2023). CAR NK Cells: The Future is Now. Annual Review of Cancer Biology, 7(1). https://doi.org/10.1146/annurev-cancerbio-061521-082320

Riedell, P. A. (2024). Unlocking the potential of CAR natural killer cell therapy in hematologic malignancies while overcoming challenges. ASCO Daily News. https://dailynews.ascopubs.org/do/unlocking-potential-car-natural-killer-cell-therapy-hematologic-malignancies-while

Salehi-Shadkami, H., Sedghi, M., Tavoosi, S., Alimohammadi, M., Alimohammadi, R., Barkhordar, M., Mofayezi, A., Modaresi, M. S., Vaezi, M., Dehghanizadeh, S., Ahmadvand, M., & Khoddami, V. (2024). Effective targeting of CD19 positive primary B-ALL cells using CAR-NK cells generated with mRNA-LNPs. bioRxiv (p. 2024.11.21.624707). https://doi.org/10.1101/2024.11.21.624707

Senti Bio. (2025). SENTI-202 for the Treatment of Acute Myeloid Leukemia (AML). Pharmacy Times. https://www.sentibio.com/research-pipeline/products/

Shanghai Gene-Optimal Biotech. Li, Z., Jiang, H., Shi, B., & Xu, N. (2024). Chimeric antigen receptor and use thereof (Patent No. WO2024250865A1). World Intellectual Property Organization. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2024250865

Shankar, N. M., Montero, P. O., Kurzyukova, A., Rackwitz, W., Künzel, S. R., Wels, W. S., Tonn, T., Knopf, F., & Eitler, J. (2023). Preclinical assessment of CAR-NK cell-mediated killing efficacy and pharmacokinetics in a rapid zebrafish xenograft model of metastatic breast cancer. bioRxiv. https://doi.org/10.1101/2023.07.11.548344

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Testa, U., Castelli, G., & Pelosi, E. (2025). Emerging role of chimeric antigen receptor-natural killer cells for the treatment of hematologic malignancies. Cancers, 17(9). Article 1454. https://doi.org/10.3390/cancers17091454

UCL Business Ltd. Pulé, M., Anderson, J., & Thomas, S. (2017). Chimeric antigen receptor (CAR) (Patent No. US20170066838A1). United States Patent and Trademark Office. (20170066838A1). https://patents.google.com/patent/US20170066838A1/en

Uhlig, J., Schmiedel, D., Tretbar, U. S., & Dünkel, A. (2025). Advances in the manufacturing of CAR-NK cells for cancer immunotherapy. Methods in Pharmacology and Toxicology (p. 63–81). Springer Nature. https://doi.org/10.1007/978-1-0716-4374-7_4

Valeri, A., García-Ortiz, A., Castellano, E., Córdoba, L., Maroto-Martín, E., Encinas, J., Leivas, A., Río, P., & Martínez-López, J. (2022). Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Frontiers in Immunology, 13, 953849. https://doi.org/10.3389/fimmu.2022.953849

Verhezen, T., Van den Eynde, A., Verstraelen, P., Gehrcken, L., Palmiotto, G., Lau, H. W., De Vos, W., van der Heijden, S., Brants, L., Melis, J., Van Audenaerde, J., Van Laere, S., Lardon, F., Deben, C., Wouters, A., Smits, E., & De Waele, J. (2025). DRP1 depletion protects NK cells against hypoxia-induced dysfunction. Em bioRxiv (p. 2025.06.23.661011). https://doi.org/10.1101/2025.06.23.661011

Wang, M., Krueger, J. B., Gilkey, A. K., Stelljes, E. M., Kluesner, M. G., Pomeroy, E. J., Skeate, J. G., Slipek, N. J., Lahr, W. S., Vázquez, P. N. C., Zhao, Y., Eaton, E. J., Laoharawee, K., Webber, B. R., & Moriarity, B. S. (2024). Precision enhancement of CAR-NK cells through non-viral engineering and highly multiplexed base editing. Em bioRxivorg. https://doi.org/10.1101/2024.03.05.582637

Wittling, M. C., Cole, A. C., Brammer, B., Diatikar, K. G., Schmitt, N. C., & Paulos, C. M. (2024). Strategies for improving CAR T cell persistence in solid tumors. Cancers, 16(16), 2858. https://doi.org/10.3390/cancers16162858

Włodarczyk, M., & Pyrzynska, B. (2022). CAR-NK as a rapidly developed and efficient immunotherapeutic strategy against cancer. Cancers, 15(1), 117. https://doi.org/10.3390/cancers15010117

Wrona, E., Borowiec, M., & Potemski, P. (2021). CAR-NK cells in the treatment of solid tumors. International Journal of Molecular Sciences, 22(11), 5899. https://doi.org/10.3390/ijms22115899

Xia, J., Minamino, S., & Kuwabara, K. (2020). CAR-expressing NK cells for cancer therapy: a new hope. Bioscience Trends, 14(5), 354–359. https://doi.org/10.5582/bst.2020.03308

Xie, G., Dong, H., Liang, Y., Ham, J. D., Rizwan, R., & Chen, J. (2020). CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine, 59(102975), 102975. https://doi.org/10.1016/j.ebiom.2020.102975

Xue, Y. (2023). Limitations and Overcomes of CAR-NK for Cancer Immunotherapy. Highlights in Science, Engineering and Technology, 36, 944–948. https://doi.org/10.54097/hset.v36i.6133

Yang, R., Yang, Y., Liu, R., Wang, Y., Yang, R., & He, A. (2024). Advances in CAR-NK cell therapy for hematological malignancies. Frontiers in Immunology, 15, 1414264. https://doi.org/10.3389/fimmu.2024.1414264

Yu, M., Luo, H., Fan, M., Wu, X., Shi, B., Di, S., Liu, Y., Pan, Z., Jiang, H., & Li, Z. (2018). Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Molecular Therapy: The Journal of the American Society of Gene Therapy, 26(2), 366–378. https://doi.org/10.1016/j.ymthe.2017.12.012

Yu, Y. Kong, R. Xu, X. Liu, S. Chen, C. Li, X. Sun, M. Yang, J. Zhao, D. Gao, J. (2024) Allogenic CD19 CAR NK cells therapy in refractory systemic lupus erythematosus: An open-label, single arm, prospective and interventional clinical trial. ACR Convergence 2024. 76 (suppl 9). https://acrabstracts.org/abstract/allogenic-cd19-car-nk-cells-therapy-in-refractory-systemic-lupus-erythematosus-an-open-label-single-arm-prospective-and-interventional-clinical-trial/

Zanfagnin, V. & Mathur, G. (2022). CAR T-cell therapies: Opportunities and challenges. CAP Today. https://www.cap.org/member-resources/articles/car-t-cells-therapies-opportunities-and-challenges

Zhang, Y., Zhou, W., Yang, J., Yang, J., & Wang, W. (2023). Chimeric antigen receptor engineered natural killer cells for cancer therapy. Experimental Hematology & Oncology, 12(1), 70. https://doi.org/10.1186/s40164-023-00431-0

Zhong, Y., & Liu, J. (2024). Emerging roles of CAR-NK cell therapies in tumor immunotherapy: current status and future directions. Cell Death Discovery, 10(1), 318. https://doi.org/10.1038/s41420-024-02077-1

Published

2025-08-02

Issue

Section

Health Sciences

How to Cite

Chimeric Antigen Receptor (CAR) Immunotherapy for Natural Killer (NK) cells, therapeutic approaches and future perspectives in the oncological field: a systematic review of Synthesis Without Meta-analysis (SWIM). Research, Society and Development, [S. l.], v. 14, n. 8, p. e0514849317, 2025. DOI: 10.33448/rsd-v14i8.49317. Disponível em: https://rsdjournal.org/rsd/article/view/49317. Acesso em: 6 dec. 2025.