Maturity model for the implementation of digital twins in a brazilian public health unit
DOI:
https://doi.org/10.33448/rsd-v14i8.49393Keywords:
Digital Twins, Maturity Model, Unified Health System, Digital Transformation.Abstract
The objective of this research is to present a study that helps to fill a gap in the literature by proposing a maturity model to assess the readiness of Brazilian public health units for the implementation of Digital Twins (DTs). DGs, as part of Industry 4.0 (I4.0) technologies, can optimize resource and process management in healthcare. The model was developed through a systematic review of Critical Success Factors (CSFs) for DG implementation and maturity model dimensions. CSFs were grouped into six conceptual classes, while maturity dimensions were categorized into four: Infrastructure, Organization, Processes, and Information Management—each with four levels: Initial, Basic, Intermediate, and Advanced. Preliminary validation was conducted in basic health units in two cities and two hospitals in the southern Fluminense region of Rio de Janeiro. Results showed the model’s ability to differentiate organizational maturity levels, highlighting its potential for practical application. This study contributes to the field by offering a tailored tool for strategic planning and resource allocation in the implementation of DGs in the public health sector, with possible expansion to private units.
References
Almeida Botega, L., Andrade, M.V. & Guedes, G.R. (2020). Brazilian hospitals’ performance: an assessment of the unified health system (sus). Health care management science 23, 443–452.
de Almeida Campos, M.L., Espanha Gomes, H. (2007). Taxonomia e classificação: a categorização como princípio. http://enancib.ppgci.ufba.br/artigos/GT2--101.pdf.
Anderl, R., Schuhmacher, T. & Gausemeier, J. (2021). Digital twin technology-an approach for industrie 4.0 vertical and horizontal lifecycle integration. Procedia CIRP 103, 27–32.
Anjos, A. L., Salamon, A. R. & Nascimento, E. S. (2020). Digital twin for well integrity with real time surveillance. Journal of Petroleum Science and Engineering. 184, 106489.
Ba´nhidi, Z., Dobos, I. & Nemeslaki, A. (2020). What the overall digital economy and society index reveals: A statistical analysis of the desi eu28 dimensions. Regional Statistics 10.
Barricelli, B. R., Casiraghi, E. & Fogli, D. (2019). A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE access. 7, 167653–71.
Bolton, A., Enzer, M., Schooling, J., Blackwell, B., Dabson, I., Evans, M., Fenemore, T., Harradence, F., Keaney, E., Kemp, A. et al. (2018). The gemini principles: guiding values for the national digital twin and information management framework. Centre for Digital Built Britain and Digital Framework Task Group.
Booth, A., James, M.S., Clowes, M., Sutton, A. et al. (2021). Systematic approaches to a successful literature review. Sage. https://uk.sagepub.com/en-gb/eur/systematic-approaches-to-a-successful-literature-review/book270933.
Bruynseels, K., Santoni de Sio, F. & Van den Hoven, J. (2018). Digital twins in health care: ethical implications of an emerging engineering paradigm. Frontiers in Genetics. 9, 31.
Bunge, M. (1980). Ciência e desenvolvimento. Italia. V.11. Google Books. https://books.google.com.br/books/about/Ciencia_e_desenvolvimento.html?id=VjsJuQEACAAJ&redir_esc=y;
Campos, M. L. A. (2004). Modelização de domínios de conhecimento: uma investigação de princípios fundamentais. Ciência da Informação. 33, 22–32.
Castro, M.C., Massuda, A., Almeida, G., Menezes-Filho, N.A., Andrade, M.V., de Souza Noronha, K.V.M., Rocha, R., Macinko, J., Hone, T., Tasca, R. et al. (2019). Brazil’s unified health system: the first 30 years and prospects for the future. The lancet. 394, 345–56.
Catae, F. S. (2012). Classificação automa´tica de texto por meio de similaridade de palavras: um algoritmo mais eficiente. Ph.D. thesis. Universidade de São Paulo.
Chen, L. et al. (2021). Gemini principles-based digital twin maturity model for asset management. Sustainability (Switzerland) 13. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111662076&doi=10.3390%2fsu13158224&partnerID=40&md5=7b5ad81.doi:
http://doi.org. 10.3390/su13158224.
Chieffi, A.L., Barradas, R.D.C.B. & Golbaum, M. (2017). Legal access to medications: a threat to brazil’s public health system? BMC Health Services Research. 17, 1–12.
Cirullies, J.M. & Schwede, T. (2021). On-demand shared digital twins an information architectural model to create transparency in collaborative supply networks. Journal of Manufacturing Systems. 59, 211–24.
Cognet, B., et al. (2019). Towards a novel comparison framework of digital maturity assessment models. In: International Conference on Software and System Process (ICSSP). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067458848&doi=10.1109%2fICSSP.2019.00040&partnerID=40&md5=4 doi:10.1109/ICSSP.2019.00040.
Croatti, A., Gabellini, M., Montagna, S. & Ricci, A. (2020). On the integration of agents and digital twins in healthcare. Journal of Medical Systems 44, 1–8.
Crosby, P.B., 1979. Quality is free: The art of making quality certain. Mass Market Paperback. Https://www.goodreads.com/book/show/1031937.Quality_Is_Free.
Cruz, R. J. M. & Tonin, L. A. (2022). Systematic review of the literature on digital twin: a discussion of contributions and a framework proposal. Gestão & Produção 29, e9621.
Dal Mas, F., Massaro, M., Rippa, P. & Secundo, G. (2023). The challenges of digital transformation in healthcare: An interdisciplinary literature review, framework, and future research agenda. Technovation. 123, 102716.
Delgado, J. M. D. & Oyedele, L. (2021). Digital twins for the built environment: learning from conceptual and process models in manufacturing. Advanced Engineering Informatics. 49, 101332.
Do Brasil, S.F. (1988). Constituição da república federativa do brasil. Brasília: Senado Federal, Centro Gráfico.
Dohale, V., Davim, J. P., Singh, S., Kumar, A. (2022). Exploring the role of artificial intelligence in building production resilience: learnings from the covid-19 pandemic. International Journal of Production Research. 62(15), 5472-88.
Duan, H. & Tian, F. (2020). The development of standardized models of digital twin. IFAC-PapersOnLine. 53, 726–31.
Dziopa, F. & Ahern, K. (2011). A systematic literature review of the applications of q-technique and its methodology. Methodology.
Erol, T., Mendi, A. F. & Dogan, D. (2020). The digital twin revolution in healthcare. In: 2020 4th international symposium on multidisciplinary studies and innovative technologies (ISMSIT), IEEE. pp. 1–7.
Farhan, M. S., Abed, A. H., Abd Ellatif, M. (2018). A systematic review for the determination and classification of the crm critical success factors supporting with their metrics. Future Computing and Informatics Journal 3, 398–416.
Freund, Y.P., 1988. Critical success factors. Planning Review 16, 20–23.
Garcia, D.C.F., Gattaz, C.C., Gattaz, N.C., 2019. The relevance of title, abstract and keywords for scientific paper writing. http://www.redalyc.org/journal/840/84061261001/movil.
Grieves, M.W. (2003). Plm–beyond lean manufacturing. Manufacturing Engineering. 130, 23–23.
Hempel, V., (2017). Healthcare solution testing for future— digital twins in healthcare. Digital Health Network 29.
Hevner, A.R., March, S.T., Park, J. & Ram, S. (2008). Design science in information systems research. Management. Information Systems Quarterly. 28, 6.
Ika, L.A., Diallo, A. & Thuillier, D., (2012). Critical success factors for world bank projects: An empirical investigation.
International Journal of Project Management. 30, 105–116.
Júnior, A. P. & Júnior, L. C. (2006). Políticas pu´blicas de sau´de no brasil. Revista Espaço para a Saúde, Londrina. 8, 13–9.
Kamble, S. S., Gunasekaran, A. & Gawankar, S. A. (2018). Sustainable industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process safety and environmental protection. 117, 408–25.
Kinman, T. & Tutt, D. (2023). Demystifying the digital twin: Turning complexity into a competitive advantage, in: The Digital Twin. Springer. 227–52.
Koche, J. C. (2016). Fundamentos de metodologia científica. Editora Vozes.
Li, H., Wang, H., Liu, G., Wang, J., Evans, S., Li, L., Wang, X., Zhang, S., Wen, X., Lie, F. et al. (2021). Concept, system structure and operating mode of industrial digital twin system. Comput. Integr. Manuf. Syst. 27, 3373–90.
Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z. & Deen, M. J. (2019). A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE access. 7, 49088–101.
Malakuti, S., 2021. Emerging technical debt in digital twin systems, in: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE. pp. 01–04.
Martins, C. C., Waclawovsky, A. J. (2015). Problemas e desafios enfrentados pelos gestores públicos no processo de gestão em saúde. Revista de Gestão em Sistemas de Saúde 4, 100–109.
Medina, F. G., Umpierrez, A. W., Martínez, V. & Fromm, H. (2021). A maturity model for digital twin implementations in the commercial aerospace oem industry, in: 2021 10th international conference on industrial technology and management (ICITM), IEEE. pp. 149–56.
Min, Q., Lu, Y., Liu, Z., Su, C. & Wang, B. (2019). Machine learning based digital twin framework for production optimization in petrochemical industry. International Journal of Information Management. 49, 502–19.
Mostafa, F., Tao, L. & Yu, W. (2021). An effective architecture of digital twin system to support human decision making and ai-driven autonomy. Concurrency and Computation: Practice and Experience. 33, e6111.
Narula, S., Prakash, S., Dwivedy, M., Talwar, V. & Tiwari, S. P. (2020). Industry 4.0 adoption key factors: an empirical study on manufacturing industry. Journal of Advances in Management Research. 17, 697–725.
Nick, G., Ko, A., Szaller, A., Zeleny, K., Kádár, B. & Kovács, T. (2022). Extension of the ccms 2.0 maturity model towards artificial intelligence. IFAC-PapersOnLine. 55, 293–8.
Oliveira Ribeiro, A., Sabbadini, F. S., Costa, K. A. & de Souza Cruz, B. S. (2022). A bibliometric analysis of the relationship between digital twins and health management: based on the web of science (wos) platform. Research, Society and Development. 11, e152111234270–e152111234270.
Opoku, A., Ahmed, V., Thwala, W. D. & Aigbavboa, C. O. (2021). Digital twin application in the construction industry: A literature review. Journal of Engineering, Design and Technology. 19, 117–41.
Parmar, R., Leiponen, A. & Thomas, L. D. (2020). Building an organizational digital twin. Business Horizons 63, 725–36.
Pati, D. & Lorusso, L.N. (2018). How to write a systematic review of the literature. HERD: Health Environments Research & Design Journal. 11, 15–30.
Paulk, M. C., Curtis, B., Chrissis, M. B. & Weber, C. V. (1993). Capability maturity model, version 1.1. IEEE software. 10, 18–27.
Pinto Junior, V. L., Cerbino Neto, J. & Penna, G. O. (2014). The evolution of the federal funding policies for the public health surveillance component of brazil’s unified health system (sus). Ciência & Saúde Coletiva. 19, 4841–9.
Porrúa, M., Lafuente, M., Roseth, B., Ripani, L., Mosqueira, E., Reyes, A., Fuenzalida, J., Suárez, F. & Salas, R. (2021).
Transformación digital y empleo público: el futuro del trabajo del gobierno.
Pullen, W., 2007. A public sector hpt maturity model. Performance Improvement 46, 9–15.
Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L. & Nee, A. Y. (2021). Enabling technologies and tools for digital twin. Journal of Manufacturing Systems. 58, 3–21.
Rad, F. F., Oghazi, P., Palmie´, M., Chirumalla, K., Pashkevich, N., Patel, P. C., Sattari, S. (2022). Industry 4.0 and supply chain performance: A systematic literature review of the benefits, challenges, and critical success factors of 11 core technologies. Industrial Marketing Management 105, 268–93.
Rocha-Ja´come, C., Carvajal, R.G., Chavero, F.M., Guevara-Cabezas, E. & Hidalgo Fort, E. (2021). Industry 4.0: a proposal of paradigm organization schemes from a systematic literature review. Sensors. 22, 66.
Sacks, R., Brilakis, I., Pikas, E., Xie, H.S. & Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering 1, e14.
Santos, A. et al. (2018). Seleção do método de pesquisa: guia para pós-graduando em design e áreas afins. Curitiba: Insight. 201.
Schenkman, S., Bousquat, A. & Ferreira, M.P. (2022). Efficiency analysis in brazil’s sao paulo state local unified health system (sus): From gender-ethnicity-power inequities to the dissolution of health effectiveness. International Journal of Environmental Research and Public Health. 19, 2990.
Semeraro, C., Lezoche, M., Panetto, H. & Dassisti, M. (2021). Digital twin paradigm: A systematic literature review. Computers in Industry. 130, 103469.
Shewhart, W. A. (1931). Economic control of quality of manufactured product. American Society for Quality Control.
da Silva Mota, J. (2019). Utilização do google forms na pesquisa acadêmica. Humanidades & Inovação. 6, 371–3.
Song, Y. & Li, Y. (2022). Digital twin aided healthcare facility management: a case study of shanghai tongji hospital, in: Construction Research Congress. 1145–1155.
Stahmann, P., Krüger, A. & Rieger, B. (2021). Digital twins for real-time data analysis in industrie 4.0: Pathways to maturity, in: Proceedings of the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (IN4PL), pp. 123–30.
Stoll, B., Schneider, M., Ihlenfeldt, S., 2020. The successful commercialization of a digital twin in an industrial product service system, in: Information Technology for Balanced Automation Systems in Manufacturing and Logistics 2020, Springer International Publishing, Cham. pp. 3–12.
Todorovic, M. L., Petrovic, D. C ., Mihic, M. M., Obradovic, V. L. & Bushuyev, S. D. (2015). Project success analysis frame-work: A knowledge-based approach in project management. International Journal of Project Management. 33, 772–83.
Uhlenkamp, J. F., Hauge, J. B., Broda, E., Lütjen, M., Freitag, M. & Thoben, K. D. (2022). Digital twins: A maturity model for their classification and evaluation. IEEE Access 10, 69605–69635.
van Velthoven, M.H., Cordon, C. & Challagalla, G. (2019). Digitization of healthcare organizations: The digital health landscape and information theory. International journal of medical informatics 124, 49–57.
Weber, C., Königsberger, J., Kassner, L. & Mitschang, B. (2017). M2ddm–a maturity model for data-driven manufacturing. Procedia Cirp. 63, 173–8.
Wendler, R. (2012). The maturity of maturity model research: A systematic mapping study. Information and Software Technology. 54, 1317–39.
Williams, J. & Ramaprasad, A. (1996). A taxonomy of critical success factors. uropean Journal of Information Systems 5, 250–60.
Zhang, L., Zhou, L. & Horn, B.K. (2021). Building a right digital twin with model engineering. Journal of Manufacturing Systems 59, 151–64.
Zhou, K., Liu, T. & Zhou, L. (2015). Industry 4.0: Towards future industrial opportunities and challenges, in: 2015 12th International conference on fuzzy systems and knowledge discovery (FSKD), IEEE. pp. 2147–52.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anderson de Oliveira Ribeiro, Francisco S. Sabbadini, Kelly Alonso Costa, Claudia Hernandez Mena, Vahid Nikoofard, Rosinei Batista Ribeiro

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
