Modelo de madurez para la implementación de gemelos digitales en una unidad de salud pública brasileña
DOI:
https://doi.org/10.33448/rsd-v14i8.49393Palabras clave:
Gemelos Digitales, Sistema Único de Salud, Modelo de Madurez, Transformación Digital.Resumen
El objetivo de esta investigación es presentar un estudio que contribuya a llenar una laguna en la literatura mediante la propuesta de un modelo de madurez para evaluar la preparación de las unidades de salud pública brasileñas para la implementación de Gemelos Digitales (DGs). Los DGs, como parte de las tecnologías de la Industria 4.0 (I4.0), pueden optimizar la gestión de recursos y procesos en el ámbito sanitario. El modelo fue desarrollado a partir de una revisión sistemática de los Factores Críticos de Éxito (FCE) para la implementación de DGs y de las dimensiones de los modelos de madurez. Los FCE se agruparon en seis clases conceptuales, mientras que las dimensiones de madurez se categorizaron en cuatro: Infraestructura, Organización, Procesos y Gestión de la Información—cada una con cuatro niveles: Inicial, Básico, Intermedio y Avanzado. La validación preliminar se realizó en unidades básicas de salud de dos municipios y en dos hospitales de la región sur fluminense de Río de Janeiro. Los resultados demostraron la capacidad del modelo para diferenciar niveles de madurez organizacional, destacando su potencial de aplicación práctica. Este estudio contribuye al área al ofrecer una herramienta adaptada para la planificación estratégica y la asignación de recursos en la implementación de DGs en el sector público de la salud, con posible expansión al ámbito privado.
Referencias
Almeida Botega, L., Andrade, M.V. & Guedes, G.R. (2020). Brazilian hospitals’ performance: an assessment of the unified health system (sus). Health care management science 23, 443–452.
de Almeida Campos, M.L., Espanha Gomes, H. (2007). Taxonomia e classificação: a categorização como princípio. http://enancib.ppgci.ufba.br/artigos/GT2--101.pdf.
Anderl, R., Schuhmacher, T. & Gausemeier, J. (2021). Digital twin technology-an approach for industrie 4.0 vertical and horizontal lifecycle integration. Procedia CIRP 103, 27–32.
Anjos, A. L., Salamon, A. R. & Nascimento, E. S. (2020). Digital twin for well integrity with real time surveillance. Journal of Petroleum Science and Engineering. 184, 106489.
Ba´nhidi, Z., Dobos, I. & Nemeslaki, A. (2020). What the overall digital economy and society index reveals: A statistical analysis of the desi eu28 dimensions. Regional Statistics 10.
Barricelli, B. R., Casiraghi, E. & Fogli, D. (2019). A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE access. 7, 167653–71.
Bolton, A., Enzer, M., Schooling, J., Blackwell, B., Dabson, I., Evans, M., Fenemore, T., Harradence, F., Keaney, E., Kemp, A. et al. (2018). The gemini principles: guiding values for the national digital twin and information management framework. Centre for Digital Built Britain and Digital Framework Task Group.
Booth, A., James, M.S., Clowes, M., Sutton, A. et al. (2021). Systematic approaches to a successful literature review. Sage. https://uk.sagepub.com/en-gb/eur/systematic-approaches-to-a-successful-literature-review/book270933.
Bruynseels, K., Santoni de Sio, F. & Van den Hoven, J. (2018). Digital twins in health care: ethical implications of an emerging engineering paradigm. Frontiers in Genetics. 9, 31.
Bunge, M. (1980). Ciência e desenvolvimento. Italia. V.11. Google Books. https://books.google.com.br/books/about/Ciencia_e_desenvolvimento.html?id=VjsJuQEACAAJ&redir_esc=y;
Campos, M. L. A. (2004). Modelização de domínios de conhecimento: uma investigação de princípios fundamentais. Ciência da Informação. 33, 22–32.
Castro, M.C., Massuda, A., Almeida, G., Menezes-Filho, N.A., Andrade, M.V., de Souza Noronha, K.V.M., Rocha, R., Macinko, J., Hone, T., Tasca, R. et al. (2019). Brazil’s unified health system: the first 30 years and prospects for the future. The lancet. 394, 345–56.
Catae, F. S. (2012). Classificação automa´tica de texto por meio de similaridade de palavras: um algoritmo mais eficiente. Ph.D. thesis. Universidade de São Paulo.
Chen, L. et al. (2021). Gemini principles-based digital twin maturity model for asset management. Sustainability (Switzerland) 13. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111662076&doi=10.3390%2fsu13158224&partnerID=40&md5=7b5ad81.doi:
http://doi.org. 10.3390/su13158224.
Chieffi, A.L., Barradas, R.D.C.B. & Golbaum, M. (2017). Legal access to medications: a threat to brazil’s public health system? BMC Health Services Research. 17, 1–12.
Cirullies, J.M. & Schwede, T. (2021). On-demand shared digital twins an information architectural model to create transparency in collaborative supply networks. Journal of Manufacturing Systems. 59, 211–24.
Cognet, B., et al. (2019). Towards a novel comparison framework of digital maturity assessment models. In: International Conference on Software and System Process (ICSSP). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067458848&doi=10.1109%2fICSSP.2019.00040&partnerID=40&md5=4 doi:10.1109/ICSSP.2019.00040.
Croatti, A., Gabellini, M., Montagna, S. & Ricci, A. (2020). On the integration of agents and digital twins in healthcare. Journal of Medical Systems 44, 1–8.
Crosby, P.B., 1979. Quality is free: The art of making quality certain. Mass Market Paperback. Https://www.goodreads.com/book/show/1031937.Quality_Is_Free.
Cruz, R. J. M. & Tonin, L. A. (2022). Systematic review of the literature on digital twin: a discussion of contributions and a framework proposal. Gestão & Produção 29, e9621.
Dal Mas, F., Massaro, M., Rippa, P. & Secundo, G. (2023). The challenges of digital transformation in healthcare: An interdisciplinary literature review, framework, and future research agenda. Technovation. 123, 102716.
Delgado, J. M. D. & Oyedele, L. (2021). Digital twins for the built environment: learning from conceptual and process models in manufacturing. Advanced Engineering Informatics. 49, 101332.
Do Brasil, S.F. (1988). Constituição da república federativa do brasil. Brasília: Senado Federal, Centro Gráfico.
Dohale, V., Davim, J. P., Singh, S., Kumar, A. (2022). Exploring the role of artificial intelligence in building production resilience: learnings from the covid-19 pandemic. International Journal of Production Research. 62(15), 5472-88.
Duan, H. & Tian, F. (2020). The development of standardized models of digital twin. IFAC-PapersOnLine. 53, 726–31.
Dziopa, F. & Ahern, K. (2011). A systematic literature review of the applications of q-technique and its methodology. Methodology.
Erol, T., Mendi, A. F. & Dogan, D. (2020). The digital twin revolution in healthcare. In: 2020 4th international symposium on multidisciplinary studies and innovative technologies (ISMSIT), IEEE. pp. 1–7.
Farhan, M. S., Abed, A. H., Abd Ellatif, M. (2018). A systematic review for the determination and classification of the crm critical success factors supporting with their metrics. Future Computing and Informatics Journal 3, 398–416.
Freund, Y.P., 1988. Critical success factors. Planning Review 16, 20–23.
Garcia, D.C.F., Gattaz, C.C., Gattaz, N.C., 2019. The relevance of title, abstract and keywords for scientific paper writing. http://www.redalyc.org/journal/840/84061261001/movil.
Grieves, M.W. (2003). Plm–beyond lean manufacturing. Manufacturing Engineering. 130, 23–23.
Hempel, V., (2017). Healthcare solution testing for future— digital twins in healthcare. Digital Health Network 29.
Hevner, A.R., March, S.T., Park, J. & Ram, S. (2008). Design science in information systems research. Management. Information Systems Quarterly. 28, 6.
Ika, L.A., Diallo, A. & Thuillier, D., (2012). Critical success factors for world bank projects: An empirical investigation.
International Journal of Project Management. 30, 105–116.
Júnior, A. P. & Júnior, L. C. (2006). Políticas pu´blicas de sau´de no brasil. Revista Espaço para a Saúde, Londrina. 8, 13–9.
Kamble, S. S., Gunasekaran, A. & Gawankar, S. A. (2018). Sustainable industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process safety and environmental protection. 117, 408–25.
Kinman, T. & Tutt, D. (2023). Demystifying the digital twin: Turning complexity into a competitive advantage, in: The Digital Twin. Springer. 227–52.
Koche, J. C. (2016). Fundamentos de metodologia científica. Editora Vozes.
Li, H., Wang, H., Liu, G., Wang, J., Evans, S., Li, L., Wang, X., Zhang, S., Wen, X., Lie, F. et al. (2021). Concept, system structure and operating mode of industrial digital twin system. Comput. Integr. Manuf. Syst. 27, 3373–90.
Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z. & Deen, M. J. (2019). A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE access. 7, 49088–101.
Malakuti, S., 2021. Emerging technical debt in digital twin systems, in: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE. pp. 01–04.
Martins, C. C., Waclawovsky, A. J. (2015). Problemas e desafios enfrentados pelos gestores públicos no processo de gestão em saúde. Revista de Gestão em Sistemas de Saúde 4, 100–109.
Medina, F. G., Umpierrez, A. W., Martínez, V. & Fromm, H. (2021). A maturity model for digital twin implementations in the commercial aerospace oem industry, in: 2021 10th international conference on industrial technology and management (ICITM), IEEE. pp. 149–56.
Min, Q., Lu, Y., Liu, Z., Su, C. & Wang, B. (2019). Machine learning based digital twin framework for production optimization in petrochemical industry. International Journal of Information Management. 49, 502–19.
Mostafa, F., Tao, L. & Yu, W. (2021). An effective architecture of digital twin system to support human decision making and ai-driven autonomy. Concurrency and Computation: Practice and Experience. 33, e6111.
Narula, S., Prakash, S., Dwivedy, M., Talwar, V. & Tiwari, S. P. (2020). Industry 4.0 adoption key factors: an empirical study on manufacturing industry. Journal of Advances in Management Research. 17, 697–725.
Nick, G., Ko, A., Szaller, A., Zeleny, K., Kádár, B. & Kovács, T. (2022). Extension of the ccms 2.0 maturity model towards artificial intelligence. IFAC-PapersOnLine. 55, 293–8.
Oliveira Ribeiro, A., Sabbadini, F. S., Costa, K. A. & de Souza Cruz, B. S. (2022). A bibliometric analysis of the relationship between digital twins and health management: based on the web of science (wos) platform. Research, Society and Development. 11, e152111234270–e152111234270.
Opoku, A., Ahmed, V., Thwala, W. D. & Aigbavboa, C. O. (2021). Digital twin application in the construction industry: A literature review. Journal of Engineering, Design and Technology. 19, 117–41.
Parmar, R., Leiponen, A. & Thomas, L. D. (2020). Building an organizational digital twin. Business Horizons 63, 725–36.
Pati, D. & Lorusso, L.N. (2018). How to write a systematic review of the literature. HERD: Health Environments Research & Design Journal. 11, 15–30.
Paulk, M. C., Curtis, B., Chrissis, M. B. & Weber, C. V. (1993). Capability maturity model, version 1.1. IEEE software. 10, 18–27.
Pinto Junior, V. L., Cerbino Neto, J. & Penna, G. O. (2014). The evolution of the federal funding policies for the public health surveillance component of brazil’s unified health system (sus). Ciência & Saúde Coletiva. 19, 4841–9.
Porrúa, M., Lafuente, M., Roseth, B., Ripani, L., Mosqueira, E., Reyes, A., Fuenzalida, J., Suárez, F. & Salas, R. (2021).
Transformación digital y empleo público: el futuro del trabajo del gobierno.
Pullen, W., 2007. A public sector hpt maturity model. Performance Improvement 46, 9–15.
Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L. & Nee, A. Y. (2021). Enabling technologies and tools for digital twin. Journal of Manufacturing Systems. 58, 3–21.
Rad, F. F., Oghazi, P., Palmie´, M., Chirumalla, K., Pashkevich, N., Patel, P. C., Sattari, S. (2022). Industry 4.0 and supply chain performance: A systematic literature review of the benefits, challenges, and critical success factors of 11 core technologies. Industrial Marketing Management 105, 268–93.
Rocha-Ja´come, C., Carvajal, R.G., Chavero, F.M., Guevara-Cabezas, E. & Hidalgo Fort, E. (2021). Industry 4.0: a proposal of paradigm organization schemes from a systematic literature review. Sensors. 22, 66.
Sacks, R., Brilakis, I., Pikas, E., Xie, H.S. & Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering 1, e14.
Santos, A. et al. (2018). Seleção do método de pesquisa: guia para pós-graduando em design e áreas afins. Curitiba: Insight. 201.
Schenkman, S., Bousquat, A. & Ferreira, M.P. (2022). Efficiency analysis in brazil’s sao paulo state local unified health system (sus): From gender-ethnicity-power inequities to the dissolution of health effectiveness. International Journal of Environmental Research and Public Health. 19, 2990.
Semeraro, C., Lezoche, M., Panetto, H. & Dassisti, M. (2021). Digital twin paradigm: A systematic literature review. Computers in Industry. 130, 103469.
Shewhart, W. A. (1931). Economic control of quality of manufactured product. American Society for Quality Control.
da Silva Mota, J. (2019). Utilização do google forms na pesquisa acadêmica. Humanidades & Inovação. 6, 371–3.
Song, Y. & Li, Y. (2022). Digital twin aided healthcare facility management: a case study of shanghai tongji hospital, in: Construction Research Congress. 1145–1155.
Stahmann, P., Krüger, A. & Rieger, B. (2021). Digital twins for real-time data analysis in industrie 4.0: Pathways to maturity, in: Proceedings of the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (IN4PL), pp. 123–30.
Stoll, B., Schneider, M., Ihlenfeldt, S., 2020. The successful commercialization of a digital twin in an industrial product service system, in: Information Technology for Balanced Automation Systems in Manufacturing and Logistics 2020, Springer International Publishing, Cham. pp. 3–12.
Todorovic, M. L., Petrovic, D. C ., Mihic, M. M., Obradovic, V. L. & Bushuyev, S. D. (2015). Project success analysis frame-work: A knowledge-based approach in project management. International Journal of Project Management. 33, 772–83.
Uhlenkamp, J. F., Hauge, J. B., Broda, E., Lütjen, M., Freitag, M. & Thoben, K. D. (2022). Digital twins: A maturity model for their classification and evaluation. IEEE Access 10, 69605–69635.
van Velthoven, M.H., Cordon, C. & Challagalla, G. (2019). Digitization of healthcare organizations: The digital health landscape and information theory. International journal of medical informatics 124, 49–57.
Weber, C., Königsberger, J., Kassner, L. & Mitschang, B. (2017). M2ddm–a maturity model for data-driven manufacturing. Procedia Cirp. 63, 173–8.
Wendler, R. (2012). The maturity of maturity model research: A systematic mapping study. Information and Software Technology. 54, 1317–39.
Williams, J. & Ramaprasad, A. (1996). A taxonomy of critical success factors. uropean Journal of Information Systems 5, 250–60.
Zhang, L., Zhou, L. & Horn, B.K. (2021). Building a right digital twin with model engineering. Journal of Manufacturing Systems 59, 151–64.
Zhou, K., Liu, T. & Zhou, L. (2015). Industry 4.0: Towards future industrial opportunities and challenges, in: 2015 12th International conference on fuzzy systems and knowledge discovery (FSKD), IEEE. pp. 2147–52.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Anderson de Oliveira Ribeiro, Francisco S. Sabbadini, Kelly Alonso Costa, Claudia Hernandez Mena, Vahid Nikoofard, Rosinei Batista Ribeiro

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.
