Heat generation mechanisms in batteries of electric and hybrid vehicles: Effects on performance and thermal management solutions
DOI:
https://doi.org/10.33448/rsd-v14i12.50285Keywords:
Electric Hybrid electric vehicles, Heat generation mechanisms, Lithium-ion batteries, Thermal management.Abstract
This study investigates the heat-generation mechanisms in lithium-ion batteries used in electric and hybrid vehicles, analyzing their impact on performance and the solutions adopted to control temperature. Based on a literature review, the main thermal management strategies currently applied were examined, including air cooling, liquid cooling, phase-change materials, and heat pipes. The literature indicates that the optimal thermal operating range lies between 25 °C and 40 °C; temperatures above this threshold compromise cell integrity, accelerate aging processes, and significantly increase the risk of thermal runaway, considered the primary safety challenge. The reviewed studies demonstrate that geometric optimizations, material adjustments, and improvements in thermal-management system arrangements contribute to greater temperature uniformity, enhanced heat dissipation, and mitigation of thermal failures. Improving cooling systems is essential and integrating them with intelligent technologies represents a promising solution for the future of electric vehicles.
References
Andersen, P. H., Mathews, J. A., & Rask, M. (2009). Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles. Energy policy, 37(7), 2481-2486.
Bai, F., Chen, M., Song, W., Feng, Z., Li, Y., & Ding, Y. (2017). Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source. Applied Thermal Engineering, 126, 17-27.
Behi, H., Ghanbarpour, M., & Behi, M. (2017). Investigation of PCM-assisted heat pipe for electronic cooling. Applied Thermal Engineering, 127, 1132-1142.
Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M. A., ... & Van Mierlo, J. (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174, 115280.
Behi, H., Karimi, D., Behi, M., Jaguemont, J., Ghanbarpour, M., Behnia, M., ... & Van Mierlo, J. (2020). Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles. Journal of energy storage, 32, 101893.
Bernardi, D., Pawlikowski, E., & Newman, J. (1985). A general energy balance for battery systems. Journal of the electrochemical society, 132(1), 5.
Buidin, T. I. C., & Mariasiu, F. (2021). Battery thermal management systems: Current status and design approach of cooling technologies. Energies, 14(16), 4879.
Castro, B. H. R. D., & Ferreira, T. T. (2010). Veículos elétricos: aspectos básicos, perspectivas e oportunidades. BNDES Setorial, n. 32, set. 2010, p. 267-310.
Castro, B. H. R. de, Barros, D. C., & Veiga, S. G. da. (2013). Baterias automotivas: Panorama da indústria no Brasil, as novas tecnologias e como os veículos elétricos podem transformar o mercado global. BNDES Setorial, (37), 443–496.
Chen, K., Wu, W., Yuan, F., Chen, L., & Wang, S. (2019). Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy, 167, 781-790.
Chen, M., Dongxu, O., Liu, J., & Wang, J. (2019). Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the 1age. Applied thermal engineering, 157, 113750.
Choudhari, V. G., Dhoble, A. S., & Panchal, S. (2020). Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. International Journal of Heat and Mass Transfer, 163, 120434.
Choudhari, V. G., Dhoble, A. S., & Sathe, T. M. (2020). A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle. Journal of Energy Storage, 32, 101729.
Cui, Y., Cong, B., Liu, J., Qiu, M., & Han, X. (2022). Characteristics and hazards of plug-in hybrid electric vehicle fires caused by lithium-ion battery packs with thermal runaway. Frontiers in Energy Research, 10, 878035.
Darcovich, K., MacNeil, D. D., Recoskie, S., Cadic, Q., & Ilinca, F. (2019). Comparison of cooling plate configurations for automotive battery pack thermal management. Applied Thermal Engineering, 155, 185-195.
De Hoog, J., Jaguemont, J., Abdel-Monem, M., Van Den Bossche, P., Van Mierlo, J., & Omar, N. (2018). Combining an electrothermal and impedance aging model to investigate thermal degradation caused by fast charging. Energies, 11(4), 804.
Deng, J., Bae, C., Denlinger, A., & Miller, T. (2020). Electric vehicles batteries: requirements and challenges. Joule, 4(3), 511-515.
Drumm, F. C., Gerhardt, A. E., Fernandes, G. D. A., Chagas, P., Sucolotti, M. S., & Kemerich, P. D. C. (2014). Poluição atmosférica proveniente da queima de combustíveis derivados do petróleo em veículos automotores. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 18(1), 66-78.
Edenhofer, O. (Ed.). (2015). Climate change 2014: mitigation of climate change (Vol. 3). Cambridge University Press.
Fan, Y., Bao, Y., Ling, C., Chu, Y., Tan, X., & Yang, S. (2019). Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Applied Thermal Engineering, 155, 96-109.
Feng, X., Fang, M., He, X., Ouyang, M., Lu, L., Wang, H., & Zhang, M. (2014). Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. Journal of power sources, 255, 294-301.
Feng, X., Sun, J., Ouyang, M., He, X., Lu, L., Han, X., ... & Peng, H. (2014). Characterization of large format lithium ion battery exposed to extremely high temperature. Journal of Power Sources, 272, 457-467.
Fleckenstein, M., Bohlen, O., Roscher, M. A., & Bäker, B. (2011). Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients. Journal of Power Sources, 196(10), 4769-4778.
Guo, J., Li, Y., Pedersen, K., & Stroe, D. I. (2021). Lithium-ion battery operation, degradation, and aging mechanism in electric vehicles: An overview. Energies, 14(17), 5220.
Guo, Z., Xu, Q., Wang, Y., Zhao, T., & Ni, M. (2023). Battery thermal management system with heat pipe considering battery aging effect. Energy, 263, 126116.
Hémery, C. V. (2013). Study of Thermal Phenomena in Li-Ion Batteries. Université de Grenoble: Grenoble, France.
Heubner, C., Schneider, M., Lämmel, C., & Michaelis, A. (2015). Local heat generation in a single stack lithium ion battery cell. Electrochimica Acta, 186, 404-412.
Huang, Y. H., Cheng, W. L., & Zhao, R. (2019). Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy conversion and management, 182, 9-20.
International Energy Agency. (2024). World energy outlook 2024. Paris. Available at: https://www.iea.org/reports/world-energy-outlook-2024
International Energy Agency. (2024). World energy outlook 2024. Paris. Disponível https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=TESbySource.
Ismail, N. H. F., Toha, S. F., Azubir, N. A. M., Ishak, N. H. M., Hassan, M. K., & Ibrahim, B. S. K. (2013, December). Simplified heat generation model for lithium ion battery used in electric vehicle. In IOP Conference Series: Materials Science and Engineering (Vol. 53, No. 1, p. 012014). IOP Publishing.
Jiang, K., Liao, G., Zhang, F., Chen, J., & Leng, E. (2020). Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review. Journal of Energy Storage, 32, 101816.
Karimi, G., & Li, X. (2013). Thermal management of lithium‐ion batteries for electric vehicles. International Journal of Energy Research, 37(1), 13-24.
Koyama, R., Arai, Y., Yamauchi, Y., Takeya, S., Endo, F., Hotta, A., & Ohmura, R. (2019). Thermophysical properties of trimethylolethane (TME) hydrate as phase change material for cooling lithium-ion battery in electric vehicle. Journal of Power Sources, 427, 70-76.
Lamb, J., Orendorff, C. J., Steele, L. A. M., & Spangler, S. W. (2015). Failure propagation in multi-cell lithium ion batteries. Journal of Power Sources, 283, 517-523.
Larsson, F., & Mellander, B. E. (2014). Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells. Journal of The Electrochemical Society, 161(10), A1611.
Liang, J., Qiu, Y., Liu, P., He, P., & Mauzerall, D. L. (2023). Effects of expanding electric vehicle charging stations in California on the housing market. Nature Sustainability, 6(5), 549-558.
Lu, M., Zhang, X., Ji, J., Xu, X., & Zhang, Y. (2020). Research progress on power battery cooling technology for electric vehicles. Journal of Energy Storage, 27, 101155.
Mohammadi, F., & Saif, M. (2023). A comprehensive overview of electric vehicle batteries market. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 3, 100127.
Mohammadian, S. K., He, Y. L., & Zhang, Y. (2015). Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes. Journal of Power Sources, 293, 458-466.
Na, X., Kang, H., Wang, T., & Wang, Y. (2018). Reverse layered air flow for Li-ion battery thermal management. Applied Thermal Engineering, 143, 257-262.
Nazari, A., & Farhad, S. (2017). Heat generation in lithium-ion batteries with different nominal capacities and chemistries. Applied Thermal Engineering, 125, 1501-1517.
Novais, C. R. B. (2016). Mobilidade elétrica: Desafios e oportunidades. São Paulo: FGV Energia. Disponível em https://fgvenergia.fgv.br/opinioes/mobilidade-eletrica-desafios-e-oportunidades
Ouyang, D., Chen, M., Huang, Q., Weng, J., Wang, Z., & Wang, J. (2019). A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Applied Sciences, 9(12), 2483.
Padhi, A. K., Nanjundaswamy, K. S., & Goodenough, J. B. (1997). Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society, 144(4), 1188.
Peng, X., Ma, C., Garg, A., Bao, N., & Liao, X. (2019). Thermal performance investigation of an air-cooled lithium-ion battery pack considering the inconsistency of battery cells. Applied Thermal Engineering, 153, 596-603.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UAB/NTE/UFSM.
Pesaran, A. A. (2001). Battery thermal management in EV and HEVs: issues and solutions. Battery Man, 43(5), 34-49.
Putra, N., Ariantara, B., & Pamungkas, R. A. (2016). Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Applied thermal engineering, 99, 784-789.
Qian, Z., Li, Y., & Rao, Z. (2016). Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126, 622-631.
Ramadass, P. H. B. W. R. P. B., Haran, B., White, R., & Popov, B. N. (2002). Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. Journal of power sources, 112(2), 606-613.
Rother, E. T. (2007). Systematic review x narrative review. Acta Paulista de Enfermagem. 20(2), 5-6.
Shailesh, K., Naresh, Y., & Banerjee, J. (2023). Heat transfer performance of a novel PCM based heat sink coupled with heat pipe: An experimental study. Applied Thermal Engineering, 229, 120552.
Silva Neto, J. L. da. (2023). Desenvolvimento de um sistema de gestão de baterias para veículos elétricos (Dissertação de mestrado). Instituto Politécnico de Coimbra, Coimbra.
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of business research, 104, 333-339.
Sun, X., Li, Z., Wang, X., & Li, C. (2019). Technology development of electric vehicles: A review. Energies, 13(1), 90.
Tran, T. H., Harmand, S., & Sahut, B. (2014). Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery. Journal of power sources, 265, 262-272.
Vaz, L. F. H., Barros, D. C., & Castro, B. H. R. D. (2015). Veículos híbridos e elétricos: sugestões de políticas públicas para o segmento.
Verma, A., Shashidhara, S., & Rakshit, D. (2019). A comparative study on battery thermal management using phase change material (PCM). Thermal Science and Engineering Progress, 11, 74-83.
Wang, C., Zhang, G., Li, X., Huang, J., Wang, Z., Lv, Y., ... & Rao, M. (2018). Experimental examination of large capacity liFePO4 battery pack at high temperature and rapid discharge using novel liquid cooling strategy. International Journal of Energy Research, 42(3), 1172-1182.
Wang, J., Lu, S., Wang, Y., Ni, Y., & Zhang, S. (2020). Novel investigation strategy for mini‐channel liquid‐cooled battery thermal management system. International Journal of Energy Research, 44(3), 1971-1985.
Wang, T., Tseng, K. J., Zhao, J., & Wei, Z. (2014). Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied energy, 134, 229-238.
Wang, Y., Mu, X., Xie, Y., Li, W., Dan, D., Qian, Y., & Zhang, Y. (2023). A coupled model and thermo-electrical performance analysis for flat heat pipe-based battery thermal management system. Applied Thermal Engineering, 233, 121116.
Wu, W., Yang, X., Zhang, G., Ke, X., Wang, Z., Situ, W., ... & Zhang, J. (2016). An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack. Energy, 113, 909-916.
Xiaoqing, Z. H. U., Zhenpo, W. A. N. G., Hsin, W. A. N. G., & Cong, W. (2020). Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles. Journal of mechanical engineering, 56(14), 91-118.
Ye, X., Zhao, Y., & Quan, Z. (2018). Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA). Applied Thermal Engineering, 130, 74-82.
Zeng, X., Li, M., Abd El‐Hady, D., Alshitari, W., Al‐Bogami, A. S., Lu, J., & Amine, K. (2019). Commercialization of lithium battery technologies for electric vehicles. Advanced Energy Materials, 9(27), 1900161.
Zhang, J., Zhang, L., Sun, F., & Wang, Z. (2018). An overview on thermal safety issues of lithium-ion batteries for electric vehicle application. Ieee Access, 6, 23848-23863.
Zhang, W., Qiu, J., Yin, X., & Wang, D. (2020). A novel heat pipe assisted separation type battery thermal management system based on phase change material. Applied Thermal Engineering, 165, 114571.
Zhang, X., Li, Z., Luo, L., Fan, Y., & Du, Z. (2022). A review on thermal management of lithium-ion batteries for electric vehicles. Energy, 238, 121652.
Zhao, G., Wang, X., Negnevitsky, M., & Zhang, H. (2021). A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. Journal of Power Sources, 501, 230001.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 José Moraes Guedes da Silva Neto, Rogério Soares da Silva, Denis Keuton Alves, Sérgio Vladimir Barreiro DeGiorgi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
