Melanized fungi and ionizing radiation attenuation: A literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v14i12.50422

Keywords:

Melanized fungi, Fungal melanin, Ionizing radiation, Radiotropism, Biotechnological shielding, Space exploration, Radiological protection.

Abstract

Ionizing radiation represents a critical challenge in terrestrial contexts and, especially, in space exploration, where high levels of cosmic radiation threaten the safety of manned missions outside the Earth's magnetosphere. In this scenario, radiotrophic melanized fungi emerge as a promising biotechnological alternative due to the unique ability of fungal melanin to absorb, dissipate, and attenuate ionizing radiation, as well as potentially converting some of this energy into metabolic benefits. This work aims to critically examine, through a literature review, the role of melanized fungi in the attenuation of ionizing radiation and evaluate their viability as an emerging biotechnological alternative for radiological shielding systems. This research, conducted through an exploratory and qualitative literature review, analyzed laboratory studies and experiments carried out on the International Space Station, which demonstrate increased growth and protective capacity of species such as Cladosporium sphaerospermum. The results indicate that fungal melanin can act as an efficient natural radioprotector, with applications aimed at building self-regenerating structures and shielding systems produced in situ in extraterrestrial environments. Although promising, advances are still limited by methodological gaps and the need for greater standardization and experimental depth. Thus, the potential of melanized fungi for the development of sustainable radiological protection technologies in both terrestrial and space environments is highlighted.

References

Averesch, N. J. H., Shunk, G. K., & Kern, C. (2022). Cultivation of the dematiaceous fungus Cladosporium sphaerospermum aboard the International Space Station and effects of ionizing radiation. Frontiers in Microbiology, 13, 877625. https://doi.org/10.3389/fmicb.2022.877625

Bland, J., et al. (2022). Evaluating changes in growth and pigmentation of Cladosporium cladosporioides and Paecilomyces variotii in response to gamma and ultraviolet irradiation. Scientific Reports, 12, 12142. https://doi.org/10.1038/s41598-022-16063-z

Dadachova, E., & Casadevall, A. (2008). Ionizing radiation: How fungi cope, adapt, and exploit with the help of melanin. Current Opinion in Microbiology, 11(6), 525–531. https://doi.org/10.1016/j.mib.2008.09.013

Dighton, J., Tugay, T., & Zhdanova, N. (2008). Fungi and ionizing radiation from radionuclides. FEMS Microbiology Letters, 281(1), 109-120. https://doi.org/10.1111/j.1574-6968.2008.01108.x

Gil, A. C. (2008). Métodos e técnicas de pesquisa social (6. ed.). Editora Atlas.

Lakatos, E. M., & Marconi, M. A. (2003). Fundamentos de metodología científica (5. ed.). Editora Atlas.

Lakatos, E. M., & Marconi, M. A. (2007). Metodologia do trabalho científico (6. ed.). Editora Atlas.

Malo, N., & Dadachova, E. (2019). Melanin as an energy transducer and a radioprotector in black fungi. In S. M. Tiquia-Arashiro & M. Grube (Eds.), Fungi in extreme environments: Ecological role and biotechnological significance (pp. 249-266). Springer. https://doi.org/10.1007/978-3-030-19030-9_10

National Aeronautics and Space Administration [NASA]. (2020). Mycelial composites for space habitats. https://www.nasa.gov/directorates/spacetech/niac/2020_Phase_I_Phase_II/myco-architecture/

Okuno, E. (2013). Radiação: Efeitos, riscos e benefícios. Oficina de Textos.

Prodanov, C. C., & Freitas, E. C. (2013). Metodologia do trabalho científico: Métodos e técnicas da pesquisa e do trabalho acadêmico (2. ed.). Feevale. https://www.feevale.br/Composicao/com_apoio_institucional/proppex/Pdf/E-book_Metodologia_do_Trabalho_Cientifico.pdf

Robertson, K. L., et al. (2012). Ionizing radiation: Molecular and cellular responses in the fungal kingdom. PLoS One, 7(12), e50963. https://doi.org/10.1371/journal.pone.0050963

Shunk, G. K., Gomez, X. R., Kern, C., & Averesch, N. J. H. (2020). Growth of the radiotrophic fungus Cladosporium sphaerospermum aboard the International Space Station and effects of ionizing radiation [Pre-print]. bioRxiv.https://doi.org/10.1101/2020.07.16.205534

Soares, J. C. A. C. R. (2008). Princípios de física em radiodiagnóstico (2. ed. rev.). Colégio Brasileiro de Radiologia.

Tauhata, L., et al. (2013). Radioproteção e dosimetria: Fundamentos (9. ed. rev.). IRD/CNEN. http://www.ird.gov.br/images/stories/Arquivos/Prt/Apostila_RD_Fundamentos.pdf

Tibolla, M. H., & Fischer, J. (2025). Fungos radiotróficos e sua utilização como agentes de biorremediação de áreas afetadas por radiação e como agentes protetores. Pesquisa, Sociedade e Desenvolvimento, 14(1), e2514147965. https://doi.org/10.33448/rsd-v14i1.47965

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Editora da UFSM.

Vasileiou, T., & Summerer, L. (2020). Biotechnology for radiation shielding in space habitats. Acta Astronautica, 170, 665–673. https://doi.org/10.1016/j.actaastro.2020.02.019

Meredith, P.; Sarna, T. The physical and chemical properties of eumelanin. Pigment Cell Research, 19(6), 572–594, dez. 2006.

Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V., & Nakonechnaya, L. T. (2000). Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research, 104(12), 1421–1426. https://doi.org/10.1017/S0953756200002756

Published

2025-12-22

Issue

Section

Review Article

How to Cite

Melanized fungi and ionizing radiation attenuation: A literature review. Research, Society and Development, [S. l.], v. 14, n. 12, p. e163141250422, 2025. DOI: 10.33448/rsd-v14i12.50422. Disponível em: https://rsdjournal.org/rsd/article/view/50422. Acesso em: 2 jan. 2026.