Identification and biotechnological potential of cellulases-producing rhizobacteria from the Amazon rhizosphere
DOI:
https://doi.org/10.33448/rsd-v15i1.50531Keywords:
Rhizobacteria , Forest amazon, Cellulose, Cellulases, Enzymes.Abstract
The Amazon rainforest hosts an extraordinary microbial diversity with significant yet underexplored biotechnological potential. This study aimed to identify and evaluate the production of endoglucanase, β-glucosidases and CMCase rhizobacteria isolated from the rhizosphere of Pueraria phaseoloides and Inga edulis, focusing on strains with potential applications in lignocellulosic biomass conversion. A total of 50 rhizobacterial isolates were reactivated and screened for cellulolytic activity using carboxymethylcellulose (CMC) agar. Thirty-one isolates (62%) formed hydrolysis halos, and 22 strains exhibited an enzymatic index (EI) ≥ 2.0, indicating high cellulolytic potential. Statistical analysis revealed significant differences between host plants, with isolates from P. phaseoloides showing higher average EI values than those from I. edulis. Molecular identification of the most active isolates (EI ≥ 2.0) revealed strains belonging to the genus Bacillus, including Bacillus subtilis and Bacillus velezensis. The strain B. subtilis INPA R-583, which showed the highest EI, was selected for enzymatic characterization. Kinetic analyses demonstrated stable and high endoglucanase (CMCase) activity, increasing β-glucosidase activity at later cultivation stages, and relatively low total cellulase (FPase) activity. These results indicate a functional but incomplete cellulolytic system, with strong potential for applications requiring endoglucanase activity. Overall, the findings highlight the Amazon rhizosphere as a valuable reservoir of cellulolytic bacteria and support the biotechnological relevance of native rhizobacteria for sustainable biomass conversion processes.
References
Abolore, R. S., Jaiswal, S., & Jaiswal, A. K. (2024). Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydrate Polymer Technologies and Applications, 7, 100396.
Altschul, S. F., Gish, W., Miller, W., & Myers, E. W. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.
Ansiliero, R., Candiago, N. T., & Gelinski, J. L. N. (2018). Caracterização bioquímica e potencial de biocontrole de rizobactérias de feijão preto (Phaseolus derasus) contra patógenos bacterianos: Um estudo preliminar. Anuário Pesquisa e Extensão Unoesc Videira, 3, e19684.
Belmont-Montefusco, E. L., Nacif-Marcal, L., Assunção, E. N. D., Hamada, N., & Nunes-Silva, C. G. (2020). Cultivable cellulolytic fungi isolated from the gut of Amazonian aquatic insects. Acta Amazonica, 50(4), 346–354.
Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666–681.
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions. Annual Review of Plant Biology, 57, 233–266.
Berendsen, R. L., Pieterse, C. M. J.,& Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486.
Cáuper, L. L. D. B. Degradação de petróleo e derivados por isolados de rizobactérias e Trichodermas spp. Tese doutorado em biotecnologia – UFAM. 2018.
Chapaval, L., Moon, D. H., Gomes, J. E., Duarte, F. R., & Tsai, S. M. (2008). An alternative method for Staphylococcus aureus DNA isolation. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 60(2), 299–306. doi: 10.1590/S0102-09352008000200004
Costa, S. C. F. D. C. Seleção de Rizobactérias capazes de degradar a farinha do mesocarpo do Babaçu para fins Biotecnológicos. Dissertação mestrado em Biotecnologia- Ufam. 2017.
Cragg, S. M., Beckham, G. T., Bruce, N. C., Bugg, T. D. H., Distel, D. L., Dupree, P., Etxabe, A. G., Goodell, B. S., Jellison, J., McGeehan, J. E., McQueen-Mason, S. J., Schnorr, K., Walton, P. H., Watts, J. E. M., & Zimmer, M. (2015). Lignocellulose degradation mechanisms across the tree of life. Current Opinion in Chemical Biology, 29, 108–119.
Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245, 35–47.
Dai, J., Dong, A., Xiong, G., Liu, Y., Hossain, M. S., Liu, S., Gao, N., Li, S., Wang, J., & Qiu, D. (2020). Production of highly active extracellular amylase and cellulase from Bacillus subtilis ZIM3 and a recombinant strain with a potential application in tobacco fermentation. Frontiers in Microbiology, 11, 1539. doi: 10.3389/fmicb.2020.01539
Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3, 853–859.
Das, K., & Mukherjee, A. K. (2007). Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid-state fermentation systems. Process Biochemistry, 42(8), 1191–1199.
Dias, M. (2012). Diversidade e produção de celulases por bactérias epifíticas de frutos típicos do cerrado mineiro (Dissertação de mestrado). Universidade Federal de Lavras.
Ega, S. L., Drendel, G., Petrovski, S., Egidi, E., Franks, A. E., & Muddada, S. (2020). Comparative analysis of structural variations due to genome shuffling of Bacillus subtilis VS15 for improved cellulase production. International Journal of Molecular Sciences, 21(4), 1299. doi: 10.3390/ijms21041299
Ejaz, U., Sohail, M., & Ghanemi, A. (2021). Cellulases: From bioactivity to a variety of industrial applications. Biomimetics, 6(3), 44.
Etale, A., Onyianta, A. J., Turner, S. R., & Eichhorn, S. J. (2023). Cellulose: A review of water interactions, applications in composites, and water treatment. Chemical Reviews, 123(5), 2016–2048.
Gaete, A. V., de Souza Teodoro, C. E., & Martinazzo, A. P. (2020). Utilização de resíduos agroindustriais para produção de celulase: Uma revisão. Research, Society and Development, 9(8), doi:10.33448/rsd-v9i8.5785
Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.
Hankin, L., & Anagnostakis, S. L. (1975). The use of solid media for detection of enzyme production by fungi. Mycologia, 67(3), 597–607.
Horn, S. J., Vaaje-Kolstad, G., Westereng, B., & Eijsink, V. G. H. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5, 45.
Jesus, E., Marsh, T. L., Tiedje, J. M., & Moreira, F. M. S. (2009). Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal, 3(1004–1011). doi: 10.1038/ismej.2009.47
Koeck, D. E., Pechtl, A., Zverlov, V. V., & Schwarz, W. H. (2014). Genomics of cellulolytic bacteria. Current Opinion in Biotechnology, 29, 171–183. doi: 10.1016/j.copbio.2014.07.002
Kuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme Research, 2011, doi: 10.4061/2011/280696
Lealem, F., & Gashe, B. A. (1994). Amylase production by a gram-positive bacterium isolated from fermenting tef (Eragrostis tef). Journal of Applied Bacteriology, 77, 348–352. doi: 10.1111/j.1365-2672.1994.tb03084.x
Lo, N., Watanabe, H., & Sugimura, M. (2003). Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proceedings of the Royal Society B, 270, S69–S72. doi: 10.1098/rsbl.2003.0016
Lopes, M. J. S., Cardoso, A. F., Dias Filho, M. B., Gurgel, E. S. C., & Barata da Silva, G. (2025). Brazilian Amazonian microorganisms: a sustainable alternative for plant development. AIMS Microbiology, 11(1), 150–166. Doi: 10.3934/microbiol.2025008
Liu, S., Quan, L., Yang, M., Wang, D., & Wang, Y. Z. (2024). Regulation of cellulase production via calcium signaling in Trichoderma reesei under PEG8000 stress. Applied Microbiology and Biotechnology, 108(178). doi: 10.1007/s00253-023-12901-w
Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization. Microbiology and Molecular Biology Reviews, 66(3), 506–577. doi: 10.1128/mmbr.66.3.506-577.2002
Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J. D., Sheehan, J., & Wyman, C. E. (2008). How biotech can transform biofuels. Nature Biotechnology, 26(2), 169–172. doi.org/10.1038/nbt0208-169
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. doi: 10.1111/1574-6976.12028
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.
Navarrete, A. A., Tsai, S. M., Mendes, L. W., Faust, K., de Hollander, M., Cassman, N. A., Raes, J., van Veen, J. A., Kuramae, E. E. (2015). Soil microbiome responses to the short-term effects of Amazonian deforestation. Molecular Ecology, 24(10), 2433–2448. doi: 10.1111/mec.13172
Nogueira, E. B. S., & Cavalcanti, M. A. Q. (1996). Cellulolytic fungi isolated from processed oats. Revista de Microbiologia, 27, 7–9.
Oliveira, T. C., Minelli-Oliveira, C., Menezes, N. C., Rodrigues, S. P.; Da Silva, J. C. I., & De Oliveira, L. A. Atividades amilolíticas de rizobactérias amazônicas em meios de cultura contendo amido de milho (Zea mays L.) ou farinha de babaçu (Orbignya phalerata Mart). Research, Society and Development, 11(5), 2022.
Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789–799. doi: 10.1038/nrmicro3109
Pramanik, S. K., Mahmud, S., Paul, G. K., Jabin, T., Naher, K., Uddin, M. S., Zaman, S., & Saleh, M. A. (2021). Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulase. Current Research in Microbial Sciences, 2, 100013. doi: 10.1016/j.crmicr.2020.100013
Rodrigues, R. de S., de Souza, A. Q. L., Barbosa, A. N., Santiago, S. R. S. da S., Vasconcelos, A. D. S., Barbosa, R. D., Alves, T. C. L., Cruz, J. C. da, Silva, G. F., Bentes, J. L. da S., & de Souza, A. D. L. (2024). Biodiversity and antifungal activities of Amazonian actinomycetes isolated from rhizospheres of Inga edulis plants. Frontiers in Bioscience (Elite Edition), 16(4), 39. doi: 10.31083/j.fbe1604039
Ruegger, M. J. S., & Tauk-Tornisielo, S. M. (2004). Atividade da celulase de fungos isolados do solo da Estação Ecológica de Juréia-Itatins, São Paulo, Brasil. Revista Brasileira de Botânica, 27, 205–211. doi: 10.1590/S0100 84042004000200001
Schallmey, M., Singh, A., & Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 50(1), 1–17. doi :10.1139/w03 076
Soares, R. de S., Reis, L. G. V. dos, Araújo, M. V. F., Rodrigues, A. A., & Vieira, J. D. G. (2017). Triagem do potencial de promoção do crescimento vegetal de rizobactérias isoladas de alface. Agrarian Academy, 4(7), 428–438.
Somasegaran, P., & Hoben, H. J. (1985). Methods in legume-Rhizobium technology. University of Hawaii.
Vaz, L. P. N. Obtenção de isolados de rizóbios com características agronômicas desejáveis provenientes de solos da região do Amazonas, Dissertação em biotecnologia- UFAM, 2013.
Vincent, J. M. (1970). A manual for the practical study of root nodule bacteria. Blackwell Scientific Publications.
Vieira Júnior, J. R., Fernandes, C. de F., Antunes Júnior, H., Silva, M. S. da, Gomes da Silva, D. S., & Silva, U. O. da (2013). Rizobactérias como agentes de controle biológico e promotores de crescimento de plantas. Embrapa Rondônia. Documentos, 155, 15 p.
Watanabe, H., & Tokuda, G. (2010). Cellulolytic systems in insects. Annual Review of Entomology, 55, 609–632.
Wedage, W. M. M., Aberathne, A. H. M. N. R., & Harischandra, I. N. (2019). A nodulation-proficient nonrhizobial inhabitant of Pueraria phaseoloides. The Scientific World Journal, doi: 10.1155/2019/9782684
Wilson, D. B. (2011). Microbial diversity of cellulose hydrolysis. Current Opinion in Microbiology, 14(3), 259–263. doi:10.1016/j.mib.2011.04.004
Zhang, T., Wei, S., Liu, Y., Cheng, C., Ma, J., Yue, L., Gao, Y., Cheng, Y., Ren, Y., Su, S., Zhao, X., & Lu, Z. (2023). Screening and genome wide analysis of lignocellulose degrading bacteria from humic soil. Frontiers in Microbiology, 14, 1167293. doi: 10.3389/fmicb.2023.1167293
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Matheus Montefusco, Enide Luciana Belmont-Montefusco, Maria Julia Pessoa Brandão, Luiz Antonio de Oliveira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
