Identificação e potencial biotecnológico de rizobactérias produtoras de celulases da rizosfera amazônica
DOI:
https://doi.org/10.33448/rsd-v15i1.50531Palavras-chave:
Rizobactéria, Amazônia, Celulose, Celulases, Enzimas.Resumo
A Amazônia abriga uma elevada diversidade microbiana com expressivo potencial biotecnológico ainda pouco explorado. Este estudo teve como objetivo identificar e avaliar rizobactérias produtoras de endoglucanases, exoglucanases e beta-glucosidases isoladas da rizosfera de Pueraria phaseoloides e Inga edulis, visando sua aplicação na conversão de biomassa lignocelulósica. Cinquenta isolados rizobacterianos foram reativados e submetidos à triagem da atividade celulolítica em meio sólido contendo carboximetilcelulose (CMC). Desses, 31 isolados (62%) apresentaram halos de degradação, sendo que 22 exibiram índice enzimático (IE) ≥ 2,0, indicando elevado potencial celulolítico. A análise estatística demonstrou diferenças significativas entre as plantas hospedeiras, com maior eficiência média dos isolados provenientes de P. phaseoloides. A identificação molecular dos isolados mais ativos revelou a predominância do gênero Bacillus, incluindo Bacillus subtilis e Bacillus velezensis. O isolado B. subtilis INPA R-583, que apresentou o maior IE, foi selecionado para caracterização enzimática. As análises cinéticas indicaram produção consistente de endoglucanase (CMCase), aumento tardio da atividade de β-glucosidase e baixa atividade celulase total (FPase). Os resultados evidenciam um sistema celulolítico funcional, porém incompleto, com elevado potencial para aplicações biotecnológicas que demandem endoglucanases. O estudo destaca a rizosfera amazônica como uma importante fonte de microrganismos nativos com potencial para processos sustentáveis de bioconversão.
Referências
Abolore, R. S., Jaiswal, S., & Jaiswal, A. K. (2024). Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydrate Polymer Technologies and Applications, 7, 100396.
Altschul, S. F., Gish, W., Miller, W., & Myers, E. W. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.
Ansiliero, R., Candiago, N. T., & Gelinski, J. L. N. (2018). Caracterização bioquímica e potencial de biocontrole de rizobactérias de feijão preto (Phaseolus derasus) contra patógenos bacterianos: Um estudo preliminar. Anuário Pesquisa e Extensão Unoesc Videira, 3, e19684.
Belmont-Montefusco, E. L., Nacif-Marcal, L., Assunção, E. N. D., Hamada, N., & Nunes-Silva, C. G. (2020). Cultivable cellulolytic fungi isolated from the gut of Amazonian aquatic insects. Acta Amazonica, 50(4), 346–354.
Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666–681.
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions. Annual Review of Plant Biology, 57, 233–266.
Berendsen, R. L., Pieterse, C. M. J.,& Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486.
Cáuper, L. L. D. B. Degradação de petróleo e derivados por isolados de rizobactérias e Trichodermas spp. Tese doutorado em biotecnologia – UFAM. 2018.
Chapaval, L., Moon, D. H., Gomes, J. E., Duarte, F. R., & Tsai, S. M. (2008). An alternative method for Staphylococcus aureus DNA isolation. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 60(2), 299–306. doi: 10.1590/S0102-09352008000200004
Costa, S. C. F. D. C. Seleção de Rizobactérias capazes de degradar a farinha do mesocarpo do Babaçu para fins Biotecnológicos. Dissertação mestrado em Biotecnologia- Ufam. 2017.
Cragg, S. M., Beckham, G. T., Bruce, N. C., Bugg, T. D. H., Distel, D. L., Dupree, P., Etxabe, A. G., Goodell, B. S., Jellison, J., McGeehan, J. E., McQueen-Mason, S. J., Schnorr, K., Walton, P. H., Watts, J. E. M., & Zimmer, M. (2015). Lignocellulose degradation mechanisms across the tree of life. Current Opinion in Chemical Biology, 29, 108–119.
Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245, 35–47.
Dai, J., Dong, A., Xiong, G., Liu, Y., Hossain, M. S., Liu, S., Gao, N., Li, S., Wang, J., & Qiu, D. (2020). Production of highly active extracellular amylase and cellulase from Bacillus subtilis ZIM3 and a recombinant strain with a potential application in tobacco fermentation. Frontiers in Microbiology, 11, 1539. doi: 10.3389/fmicb.2020.01539
Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3, 853–859.
Das, K., & Mukherjee, A. K. (2007). Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid-state fermentation systems. Process Biochemistry, 42(8), 1191–1199.
Dias, M. (2012). Diversidade e produção de celulases por bactérias epifíticas de frutos típicos do cerrado mineiro (Dissertação de mestrado). Universidade Federal de Lavras.
Ega, S. L., Drendel, G., Petrovski, S., Egidi, E., Franks, A. E., & Muddada, S. (2020). Comparative analysis of structural variations due to genome shuffling of Bacillus subtilis VS15 for improved cellulase production. International Journal of Molecular Sciences, 21(4), 1299. doi: 10.3390/ijms21041299
Ejaz, U., Sohail, M., & Ghanemi, A. (2021). Cellulases: From bioactivity to a variety of industrial applications. Biomimetics, 6(3), 44.
Etale, A., Onyianta, A. J., Turner, S. R., & Eichhorn, S. J. (2023). Cellulose: A review of water interactions, applications in composites, and water treatment. Chemical Reviews, 123(5), 2016–2048.
Gaete, A. V., de Souza Teodoro, C. E., & Martinazzo, A. P. (2020). Utilização de resíduos agroindustriais para produção de celulase: Uma revisão. Research, Society and Development, 9(8), doi:10.33448/rsd-v9i8.5785
Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.
Hankin, L., & Anagnostakis, S. L. (1975). The use of solid media for detection of enzyme production by fungi. Mycologia, 67(3), 597–607.
Horn, S. J., Vaaje-Kolstad, G., Westereng, B., & Eijsink, V. G. H. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5, 45.
Jesus, E., Marsh, T. L., Tiedje, J. M., & Moreira, F. M. S. (2009). Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal, 3(1004–1011). doi: 10.1038/ismej.2009.47
Koeck, D. E., Pechtl, A., Zverlov, V. V., & Schwarz, W. H. (2014). Genomics of cellulolytic bacteria. Current Opinion in Biotechnology, 29, 171–183. doi: 10.1016/j.copbio.2014.07.002
Kuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme Research, 2011, doi: 10.4061/2011/280696
Lealem, F., & Gashe, B. A. (1994). Amylase production by a gram-positive bacterium isolated from fermenting tef (Eragrostis tef). Journal of Applied Bacteriology, 77, 348–352. doi: 10.1111/j.1365-2672.1994.tb03084.x
Lo, N., Watanabe, H., & Sugimura, M. (2003). Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proceedings of the Royal Society B, 270, S69–S72. doi: 10.1098/rsbl.2003.0016
Lopes, M. J. S., Cardoso, A. F., Dias Filho, M. B., Gurgel, E. S. C., & Barata da Silva, G. (2025). Brazilian Amazonian microorganisms: a sustainable alternative for plant development. AIMS Microbiology, 11(1), 150–166. Doi: 10.3934/microbiol.2025008
Liu, S., Quan, L., Yang, M., Wang, D., & Wang, Y. Z. (2024). Regulation of cellulase production via calcium signaling in Trichoderma reesei under PEG8000 stress. Applied Microbiology and Biotechnology, 108(178). doi: 10.1007/s00253-023-12901-w
Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization. Microbiology and Molecular Biology Reviews, 66(3), 506–577. doi: 10.1128/mmbr.66.3.506-577.2002
Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J. D., Sheehan, J., & Wyman, C. E. (2008). How biotech can transform biofuels. Nature Biotechnology, 26(2), 169–172. doi.org/10.1038/nbt0208-169
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. doi: 10.1111/1574-6976.12028
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.
Navarrete, A. A., Tsai, S. M., Mendes, L. W., Faust, K., de Hollander, M., Cassman, N. A., Raes, J., van Veen, J. A., Kuramae, E. E. (2015). Soil microbiome responses to the short-term effects of Amazonian deforestation. Molecular Ecology, 24(10), 2433–2448. doi: 10.1111/mec.13172
Nogueira, E. B. S., & Cavalcanti, M. A. Q. (1996). Cellulolytic fungi isolated from processed oats. Revista de Microbiologia, 27, 7–9.
Oliveira, T. C., Minelli-Oliveira, C., Menezes, N. C., Rodrigues, S. P.; Da Silva, J. C. I., & De Oliveira, L. A. Atividades amilolíticas de rizobactérias amazônicas em meios de cultura contendo amido de milho (Zea mays L.) ou farinha de babaçu (Orbignya phalerata Mart). Research, Society and Development, 11(5), 2022.
Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789–799. doi: 10.1038/nrmicro3109
Pramanik, S. K., Mahmud, S., Paul, G. K., Jabin, T., Naher, K., Uddin, M. S., Zaman, S., & Saleh, M. A. (2021). Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulase. Current Research in Microbial Sciences, 2, 100013. doi: 10.1016/j.crmicr.2020.100013
Rodrigues, R. de S., de Souza, A. Q. L., Barbosa, A. N., Santiago, S. R. S. da S., Vasconcelos, A. D. S., Barbosa, R. D., Alves, T. C. L., Cruz, J. C. da, Silva, G. F., Bentes, J. L. da S., & de Souza, A. D. L. (2024). Biodiversity and antifungal activities of Amazonian actinomycetes isolated from rhizospheres of Inga edulis plants. Frontiers in Bioscience (Elite Edition), 16(4), 39. doi: 10.31083/j.fbe1604039
Ruegger, M. J. S., & Tauk-Tornisielo, S. M. (2004). Atividade da celulase de fungos isolados do solo da Estação Ecológica de Juréia-Itatins, São Paulo, Brasil. Revista Brasileira de Botânica, 27, 205–211. doi: 10.1590/S0100 84042004000200001
Schallmey, M., Singh, A., & Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 50(1), 1–17. doi :10.1139/w03 076
Soares, R. de S., Reis, L. G. V. dos, Araújo, M. V. F., Rodrigues, A. A., & Vieira, J. D. G. (2017). Triagem do potencial de promoção do crescimento vegetal de rizobactérias isoladas de alface. Agrarian Academy, 4(7), 428–438.
Somasegaran, P., & Hoben, H. J. (1985). Methods in legume-Rhizobium technology. University of Hawaii.
Vaz, L. P. N. Obtenção de isolados de rizóbios com características agronômicas desejáveis provenientes de solos da região do Amazonas, Dissertação em biotecnologia- UFAM, 2013.
Vincent, J. M. (1970). A manual for the practical study of root nodule bacteria. Blackwell Scientific Publications.
Vieira Júnior, J. R., Fernandes, C. de F., Antunes Júnior, H., Silva, M. S. da, Gomes da Silva, D. S., & Silva, U. O. da (2013). Rizobactérias como agentes de controle biológico e promotores de crescimento de plantas. Embrapa Rondônia. Documentos, 155, 15 p.
Watanabe, H., & Tokuda, G. (2010). Cellulolytic systems in insects. Annual Review of Entomology, 55, 609–632.
Wedage, W. M. M., Aberathne, A. H. M. N. R., & Harischandra, I. N. (2019). A nodulation-proficient nonrhizobial inhabitant of Pueraria phaseoloides. The Scientific World Journal, doi: 10.1155/2019/9782684
Wilson, D. B. (2011). Microbial diversity of cellulose hydrolysis. Current Opinion in Microbiology, 14(3), 259–263. doi:10.1016/j.mib.2011.04.004
Zhang, T., Wei, S., Liu, Y., Cheng, C., Ma, J., Yue, L., Gao, Y., Cheng, Y., Ren, Y., Su, S., Zhao, X., & Lu, Z. (2023). Screening and genome wide analysis of lignocellulose degrading bacteria from humic soil. Frontiers in Microbiology, 14, 1167293. doi: 10.3389/fmicb.2023.1167293
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2026 Matheus Montefusco, Enide Luciana Belmont-Montefusco, Maria Julia Pessoa Brandão, Luiz Antonio de Oliveira

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
