Landrace maize treated with bioinputs and natural phosphate tolerates water deficit

Authors

DOI:

https://doi.org/10.33448/rsd-v14i7.49170

Keywords:

Zea mays L., Water Restriction, Efficient Microorganisms, Agrobiodiversity.

Abstract

This study aimed to evaluate whether reactive natural phosphate (RNP), combined with plant growth-promoting microorganisms (PGPM), promotes the growth of creole maize (Zea mays L.) plants cultivated under water déficit (WD) conditions. The experiments were conducted in a greenhouse and followed a completely randomized design, with combinations of WD, RNP, and microorganisms (AzospirillumAz; Bacillus subtilis + Bacillus megateriumBsBm; and efficient microorganisms – EM). The following variables were determined: shoot height (SH), stem diameter, number of leaves (NL), chlorophyll content and fluorescence (Fv/Fm), internal CO₂ concentration (Ci), water use efficiency (WUE), transpiration rate (E), stomatal conductance (gs), and net photosynthetic rate (A). An increase in SH was observed under WD and in the average (with and without WD) of treatments with RNP combined with Az, BsBm, or EM. Under WD, leaf Ci decreased by 22% and 12% in the control and Az treatments, respectively. Conversely, Ci increased 1.4 times with EM, BsBm, RNP+Az, and RNP+BsBm under WD. The highest WUE values were found in the RNP+BsBm and RNP+EM treatments (8% and 12%, respectively). WD increased WUE in the control and Az treatments. Under WD, A/Ci increased up to 34% in the control and Az treatments, while BsBm and RNP+Az led to a 30% reduction. Therefore, bioinputs promoted maize growth under both water availability conditions. A 50% reduction in water supply did not alter physiological parameters, indicating stress tolerance in the evaluated landrace genotype.

References

Agunbiade, V. F., Fadiji, A. E., Agbodjato, N. A., & Babalola, O. O. (2024). Isolation and Characterization of Plant-Growth-Promoting, Drought-Tolerant Rhizobacteria for Improved Maize Productivity. Plants, 13(10), 1298. https://doi.org/10.3390/plants13101298

Akamine, C. T. & Yamamoto, R. K. (2009). Estudo dirigido: estatística descritiva. (3ed). Editora Érica.

Araújo, D. R. De, Gomes, F. A., Moreira, J. G. D. V., Mattar, E. P. L., Araújo, E. A. De, Ferreira, J. B., Souza, C. S. De, & Nascimento, L. D. O. (2023). Variabilidade nutricional e física de variedades tradicionais de milho (Zea mays L.) cultivados no vale do Juruá, Acre, Brasil. Ciência Animal Brasileira, 24. https://doi.org/10.1590/1809-6891v24e-74403e

Araujo, J. L., de Mesquita Alves, J., Rocha, R. H. C., Santos, J. Z. L., dos Santos Barbosa, R., da Costa, F. M. N., de Lima, G. S., de Freitas, L. N., Lima, A. S., Nogueira, A. E. P., da Silva, A. A. R., dos Santos, L. C., Bezerra Neto, F., & da Silva Sá, F. V. (2023). Beneficial Microorganisms Affect Soil Microbiological Activity and Corn Yield under Deficit Irrigation. Agriculture, 13(6), 1169. https://doi.org/10.3390/agriculture13061169

Azeem, M., Haider, M. Z., Javed, S., Saleem, M. H., & Alatawi, A. (2022). Drought Stress Amelioration in Maize (Zea mays L.) by Inoculation of Bacillus spp. Strains under Sterile Soil Conditions. Agriculture, 12(1), 50. https://doi.org/10.3390/agriculture12010050

Azevedo, L. C. B., Bertini, S. C. B., Ferreira, A. S., Rodovalho, N. S., Ferreira, L. F. R., & Kumar, A. (2024). Microbial contribution to the carbon flux in the soil: A literature review. Revista Brasileira de Ciência do Solo, 48. https://doi.org/10.36783/18069657rbcs20230065

Barbosa, B. B., Pimentel, J. P., Rodovalho, N. S., Bertini, S. C. B., Kumar, A., Ferreira, L. F. R., & Azevedo, L. C. B. (2022). Ascomycetous isolates promote soil biological and nutritional attributes in corn and soybeans in sandy and clayey soils. Rhizosphere, 24, 100625. https://doi.org/10.1016/j.rhisph.2022.100625

Brasileira, E., Agropecuária, P., Oliveira, C. De, Isabel, R., Souza, R. P. De, & Magalhães, P. C. ([s.d.]). Boletim De Pesquisa E Desenvolvimento 240 Resposta do Milho à Inoculação com Rizobactérias sob Diferentes Níveis de Estresse Hídrico. www.embrapa.br/fale-conosco/sac

Buragohain, K., Tamuly, D., Sonowal, S., & Nath, R. (2024). Impact of Drought Stress on Plant Growth and Its Management Using Plant Growth Promoting Rhizobacteria. Indian Journal of Microbiology, 64(2), 287–303. https://doi.org/10.1007/s12088-024-01201-0

Cardoso, I. P. (2020). Impactos das mudanças climáticas sobre as demandas de água para irrigação de culturas de sequeiro na região Sul e Campanha do Rio Grande do Sul. http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/7525

Chieb, M., & Gachomo, E. W. (2023). The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, 23(1), 407. https://doi.org/10.1186/s12870-023-04403-8

Falcão, N. P. de S., & Silva, J. R. A. da. (2004). Características de adsorção de fósforo em alguns solos da Amazônia Central. Acta Amazonica, 34(3), 337–342. https://doi.org/10.1590/S0044-59672004000300001

Ferreira, J. C. C., Cruz, J. F. da, Negreiros, T. M. N., Brito, W. B. M., Lima, A. F. L., & Souza, A. E. D. de. (2024). Respostas morfofisiológicas de plantas de milho e jiló ao estresse hídrico induzido. Revista em Agronegócio e Meio Ambiente, 17(1), e11639. https://doi.org/10.17765/2176-9168.2024v17n1e11639

Global status of salt-affected soils. (2024). FAO. https://doi.org/10.4060/cd3044en

Gureeva, M. V., & Gureev, A. P. (2023). Molecular Mechanisms Determining the Role of Bacteria from the Genus Azospirillum in Plant Adaptation to Damaging Environmental Factors. International Journal of Molecular Sciences, 24(11), 9122. https://doi.org/10.3390/ijms24119122

Jehani, M. D., Singh, S., T. S., A., Kumar, D., & Kumar, G. (2023). Azospirillum—a free-living nitrogen-fixing bacterium. In Rhizobiome (p. 285–308). Elsevier. https://doi.org/10.1016/B978-0-443-16030-1.00001-8

Kloepper, J. W., Ryu, C.-M., & Zhang, S. (2004). Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology®, 94(11), 1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259

Kudoyarova, G. R., Melentiev, A. I., Martynenko, E. V., Timergalina, L. N., Arkhipova, T. N., Shendel, G. V., Kuz’mina, L. Y., Dodd, I. C., & Veselov, S. Y. (2014). Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiology and Biochemistry, 83, 285–291. https://doi.org/10.1016/j.plaphy.2014.08.015

Li, Q., Ye, A., Wada, Y., Zhang, Y., & Zhou, J. (2024). Climate change leads to an expansion of global drought-sensitive area. Journal of Hydrology, 632, 130874. https://doi.org/10.1016/j.jhydrol.2024.130874

Lin, S., Gunupuru, L. R., Ofoe, R., Saleh, R., Asiedu, S. K., Thomas, R. H., & Abbey, Lord. (2021). Mineralization and nutrient release pattern of vermicast-sawdust mixed media with or without addition of Trichoderma viride. PLOS ONE, 16(7), e0254188. https://doi.org/10.1371/journal.pone.0254188

Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., & Hammer, G. L. (2014). Greater Sensitivity to Drought Accompanies Maize Yield Increase in the U.S. Midwest. Science, 344(6183), 516–519. https://doi.org/10.1126/science.1251423

Marques, D. M., Magalhães, P. C., Marriel, I. E., Gomes Junior, C. C., Da Silva, A. B., Melo, I. G., & De Souza, T. C. (2020). Azospirillum brasilense Favors morphophysiological characteristics and nutrient accumulation in maize cultivated under two water regimes. Revista Brasileira de Milho e Sorgo, 19, 17. https://doi.org/10.18512/rbms2020v19e1152

Mimura, T., & Reid, R. (2024). Phosphate environment and phosphate uptake studies: past and future. Journal of Plant Research, 137(3), 307–314. https://doi.org/10.1007/s10265-024-01520-9

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Ed.UAB/NTE/UFSM.

Oliveira-Paiva, C. A., Bini, D., de Sousa, S. M., Ribeiro, V. P., dos Santos, F. C., de Paula Lana, U. G., de Souza, F. F., Gomes, E. A., & Marriel, I. E. (2024). Inoculation with Bacillus megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 improve P-acquisition and maize yield in Brazil. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1426166

Poveda, J., Eugui, D., Abril-Urías, P., & Velasco, P. (2021). Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis, 85(1), 1–19. https://doi.org/10.1007/s13199-021-00789-x

RDTL - MAP. (2011). Ministério Da Agricultura E Pescas.

Rezende, C. C., Silva, M. A., Frasca, L. L. de M., Faria, D. R., Filippi, M. C. C. de, Lanna, A. C., & Nascente, A. S. (2021). Microrganismos multifuncionais: utilização na agricultura. Research, Society and Development, 10(2), e50810212725. https://doi.org/10.33448/rsd-v10i2.12725

Santiago, G. D. M., Cargnelutti, D., & Castamann, A. (2022). Microrganismos eficientes : uma ferramenta alternativa para o manejo da seca em plantas de feijoeiro ? Revista Verde de Agroecologia e Desenvolvimento Sustentável, 17(1), 1–9. https://doi.org/10.18378/rvads.v17i1.9171

Santos, T. T., Casari, R. A. das C. N., Molinari, H. B. C., Kobayashi, A. K., Souza Júnior, M. T., Silva, V. N. B., Ferreira, T. M. M., & Sousa, C. A. F. de. (2021). Discrimination of responses of corn genotypes to drought through physiological, growth, and yield traits. Pesquisa Agropecuária Brasileira, 56. https://doi.org/10.1590/s1678-3921.pab2021.v56.01948

Sheoran, S., Kaur, Y., Kumar, S., Shukla, S., Rakshit, S., & Kumar, R. (2022). Recent Advances for Drought Stress Tolerance in Maize (Zea mays L.): Present Status and Future Prospects. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.872566

Shitsuka et al. (2014). Matemática fundamental para a tecnologia. São Paulo: Ed. Érica.

Silva, A. L. da, Cordeiro, R. S., & Rocha, H. C. R. da. (2022). Aplicabilidade de Microrganismos Eficientes (ME) na Agricultura: uma revisão bibliográfica. Research, Society and Development, 11(1), e32311125054. https://doi.org/10.33448/rsd-v11i1.25054

Sousa, R. S. de, Bastos, E. A., Cardoso, M. J., & Pereira, D. R. (2018). Identification of drought-tolerant corn genotypes by multivariate analysis1. Pesquisa Agropecuária Tropical, 48(3), 204–211. https://doi.org/10.1590/1983-40632018v4852122

Souza, L. C., Monteiro, G. G. T. N., Marinho, R. K. M., Souza, E. F. L., Oliveira, S. C. F., Ferreira, A. C. S., Oliveira Neto, C. F., Okumura, R. S., & Souza, L. C. (2023). Nitrogen metabolism in maize plants submitted to drought, brassinosteroids and azospirillum. Brazilian Journal of Biology, 83. https://doi.org/10.1590/1519-6984.276264

Xavier, P. S., Lopes, J. B. de L., Ribeiro, J. C., Oliveira, H. F. E. de, Mirza, C. C. R., Vale, L. S. R., Cordeiro, V. A. S., & Selari, P. J. R. G. (2025). Nitrogen fertilization associated with Azospirillum brasilense inoculation in the maize crop. Contribuciones A Las Ciencias Sociales, 18(5), e18319. https://doi.org/10.55905/revconv.18n.5-442

Yasin, S., Zavala-García, F., Niño-Medina, G., Rodríguez-Salinas, P. A., Gutiérrez-Diez, A., Sinagawa-García, S. R., & Lugo-Cruz, E. (2024). Morphological and Physiological Response of Maize (Zea mays L.) to Drought Stress during Reproductive Stage. Agronomy, 14(8), 1718. https://doi.org/10.3390/agronomy14081718

Zambrano Gavilanes, F., Souza Andrade, D., Zucareli, C., Sarkis Yunes, J., Rodrigues Silva, H., Hélder Horácio, E., Maddela, N. R., Sánchez-Urdaneta, A. B., Guimarães, M. de F., & Prasad, R. (2023). Combination effects of microbial inoculation and N fertilization on maize yield: A field study from southern Brazil. Rhizosphere, 27, 100768. https://doi.org/10.1016/j.rhisph.2023.100768

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2–12. https://doi.org/10.1111/ppl.12540

Published

2025-07-05

Issue

Section

Agrarian and Biological Sciences

How to Cite

Landrace maize treated with bioinputs and natural phosphate tolerates water deficit. Research, Society and Development, [S. l.], v. 14, n. 7, p. e1514749170, 2025. DOI: 10.33448/rsd-v14i7.49170. Disponível em: https://rsdjournal.org/rsd/article/view/49170. Acesso em: 5 dec. 2025.