Optimizing the solvent mixture for extracting phenolic compounds with antioxidant and phytotoxicity activity from Myrcia fallax leaves using the I-optimal design

Authors

DOI:

https://doi.org/10.33448/rsd-v14i9.49574

Keywords:

M.fallax, I-optimal, Antioxidant activity and phytotoxicity.

Abstract

The objective of this study was, through an I-optimal design, to enhance the extraction of total phenolic content (TPC) and total flavonoid compounds (TFC) from Myrcia fallax (A. Rich) DC leaves from a mixture of three solvents of Ethanol, Methanol, and water (maximum 50%) to get the best yield, antioxidant and phytotoxic results. Methanol provided higher percentage yields of extraction, while for Total Phenolic Content (TPC) and Total Flavonoid Content (TFC), better values were given to methanol-water. Also, pure ethanol had better results regarding antioxidant activity using DPPH and the ABTS methods. For phytotoxicity activity evaluation, extracts from methanol-water were indicated due to their ability to inhibit radicle length and stimulate hypocotyl growth compared to the control. Then, the I-optimal design allowed us to correlate the Myrcia fallax extracts with their biological activities from solvent-different polarity mixtures.

References

Abrahim, D., Braguini, W. L., Kelmer-Bracht, A. M., & Ishii-Iwamoto, E. L. (2000). Effects of Four Monoterpenes on Germination, Primary Root Growth, and Mitochondrial Respiration of Maize. Journal of Chemical Ecology, 26(3), 611–624. https://doi.org/10.1023/A:1005467903297

Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in Pharmacology, 14, 1269581. https://doi.org/10.3389/fphar.2023.1269581

Barros-Neto, B., Scarminio, I. S., & Bruns, R. E. (2022). Como fazer experimentos: Pesquisa e desenvolvimento na ciência e na indústria. Bookman.

Bhadange, Y. A., Saharan, V. K., Sonawane, S. H., & Boczkaj, G. (2022). Intensification of catechin extraction from the bark of Syzygium cumini using ultrasonication: Optimization, characterization, degradation analysis and kinetic studies. Chemical Engineering and Processing - Process Intensification, 181, 109147. https://doi.org/10.1016/j.cep.2022.109147

Bodoira, R., & Maestri, D. (2020). Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. Journal of Agricultural and Food Chemistry, 68(4), 927–942. https://doi.org/10.1021/acs.jafc.9b07160

Bravo., H., Copaja, S., & Lamborot, M. (2013). Phytotoxicity of Phenolic Acids From Cereals. Em A. Price (Org.), Herbicides—Advances in Research. InTech. https://doi.org/10.5772/55942

Bucić-Kojić, A., Planinić, M., Tomas, S., Jokić, S., Mujić, I., Bilić, M., & Velić, D. (2011). Effect of Extraction Conditions on the Extractability of Phenolic Compounds from Lyophilised Fig Fruits (Ficus Carica L.). Polish Journal of Food and Nutrition Sciences, 61(3), 195–199. https://doi.org/10.2478/v10222-011-0021-9

Buer, C. S., & Djordjevic, M. A. (2009). Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. Journal of Experimental Botany, 60(3), 751–763. https://doi.org/10.1093/jxb/ern323

Buer, C. S., Imin, N., & Djordjevic, M. A. (2010). Flavonoids: New Roles for Old Molecules. Journal of Integrative Plant Biology, 52(1), 98–111. https://doi.org/10.1111/j.1744-7909.2010.00905.x

Candioti, V. L., De Zan, M. M., Cámara, M. S., & Goicoechea, H. C. (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124, 123–138. https://doi.org/10.1016/j.talanta.2014.01.034

Carrillo-Martinez, E. J., Flores-Hernández, F. Y., Salazar-Montes, A. M., Nario-Chaidez, H. F., & Hernández-Ortega, L. D. (2024). Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules, 29(5), 1000. https://doi.org/10.3390/molecules29051000

Cascaes, M., Guilhon, G., Andrade, E., Zoghbi, M., & Santos, L. (2015). Constituents and Pharmacological Activities of Myrcia (Myrtaceae): A Review of an Aromatic and Medicinal Group of Plants. International Journal of Molecular Sciences, 16(10), 23881–23904. https://doi.org/10.3390/ijms161023881

Chebil, L., Humeau, C., Anthoni, J., Dehez, F., Engasser, J.-M., & Ghoul, M. (2007). Solubility of Flavonoids in Organic Solvents. Journal of Chemical & Engineering Data, 52(5), 1552–1556. https://doi.org/10.1021/je7001094

Costa, M. F., Jesus, T. I., Lopes, B. R. P., Angolini, C. F. F., Montagnolli, A., Gomes, L. de P., Pereira, G. S., Ruiz, A. L. T. G., Carvalho, J. E., Eberlin, M. N., dos Santos, C., & Toledo, K. A. (2016). Eugenia aurata and Eugenia punicifolia HBK inhibit inflammatory response by reducing neutrophil adhesion, degranulation and NET release. BMC Complementary and Alternative Medicine, 16(1), 403. https://doi.org/10.1186/s12906-016-1375-7

Ćujić, N., Šavikin, K., Janković, T., Pljevljakušić, D., Zdunić, G., & Ibrić, S. (2016). Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry, 194, 135–142. https://doi.org/10.1016/j.foodchem.2015.08.008

Dai, J., & Mumper, R. J. (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313

De Martino, L., Mencherini, T., Mancini, E., Aquino, R. P., De Almeida, L. F. R., & De Feo, V. (2012). In Vitro Phytotoxicity and Antioxidant Activity of Selected Flavonoids. International Journal of Molecular Sciences, 13(5), 5406–5419. https://doi.org/10.3390/ijms13055406

DiCiaula, M. C., Lopes, G. C., Scarminio, I. S., & de Mello, J. C. P. (2014). Optimization of solvent mixtures for extraction from bark of Schinus terebinthifolius by a statistical mixture-design technique and development of a UV-Vis spectrophotometric method for analysis of total polyphenols in the extract. Química Nova, 37(1), 158–163. https://doi.org/10.1590/S0100-40422014000100026

Enujiugha, V. N., Talabi, J. Y., Malomo, S. A., & Olagunju, A. I. (2012). DPPH Radical Scavenging Capacity of Phenolic Extracts from African Yam Bean Sphenostylis stenocarpa. Food and Nutrition Sciences, 03(01), 7–13. https://doi.org/10.4236/fns.2012.31002

Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., Da Silva, E. G. P., Portugal, L. A., Dos Reis, P. S., Souza, A. S., & Dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. https://doi.org/10.1016/j.aca.2007.07.011

Franco, D. M., Saldanha, L. L., Silva, E. M., Nogueira, F. T. S., & Santos, C. (s. d.). Effects of leaf extracts of Myrcia guianensis (Aubl.) DC.: On growth and gene expression during root development of Sorghum bicolor (L.) Moench. 35(2), 237–248.

Franco, D. M., Silva, E. M., Saldanha, L. L., Adachi, S. A., Schley, T. R., Rodrigues, T. M., Dokkedal, A. L., Nogueira, F. T. S., & Rolim De Almeida, L. F. (2015). Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III. Journal of Plant Physiology, 188, 89–95. https://doi.org/10.1016/j.jplph.2015.09.009

Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules, 15(12), 8813–8826. https://doi.org/10.3390/molecules15128813

Ghaffar, N., & Perveen, A. (2024). Solvent polarity effects on extraction yield, phenolic content, and antioxidant properties of Malvaceae family seeds: A comparative study. New Zealand Journal of Botany, 1–11. https://doi.org/10.1080/0028825X.2024.2392705

Imatomi, M., Novaes, P., & Gualtieri, S. C. J. (2013). Interspecific variation in the allelopathic potential of the family Myrtaceae. Acta Botanica Brasilica, 27(1), 54–61. https://doi.org/10.1590/S0102-33062013000100008

Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of Toxicology, 97(10), 2499–2574. https://doi.org/10.1007/s00204-023-03562-9

Kalia, K., Sharma, K., Singh, H. P., & Singh, B. (2008). Effects of Extraction Methods on Phenolic Contents and Antioxidant Activity in Aerial Parts of Potentilla atrosanguinea Lodd. And Quantification of Its Phenolic Constituents by RP-HPLC †. Journal of Agricultural and Food Chemistry, 56(21), 10129–10134. https://doi.org/10.1021/jf802188b

Keerthiga, G., & Sridhar, A. (2022). Batch extraction kinetics and total phenolic content estimation of Syzygium Cumini.L bark. Indian Chemical Engineer, 64(5), 565–575. https://doi.org/10.1080/00194506.2022.2046512

Li, Z.-H., Wang, Q., Ruan, X., Pan, C.-D., & Jiang, D.-A. (2010). Phenolics and Plant Allelopathy. Molecules, 15(12), 8933–8952. https://doi.org/10.3390/molecules15128933

Mendes, M. K. D. A., Oliveira, C. B. D. S., Veras, M. D. A., Araújo, B. Q., Dantas, C., Chaves, M. H., Lopes Júnior, C. A., & Vieira, E. C. (2019). Application of multivariate optimization for the selective extraction of phenolic compounds in cashew nuts (Anacardium occidentale L.). Talanta, 205, 120100. https://doi.org/10.1016/j.talanta.2019.06.100

Miles, J. (2014). R Squared, Adjusted R Squared. Em R. S. Kenett, N. T. Longford, W. W. Piegorsch, & F. Ruggeri (Org.), Wiley StatsRef: Statistics Reference Online (1o ed.). Wiley. https://doi.org/10.1002/9781118445112.stat06627

Moresco, H. H., Pereira, M., Bretanha, L. C., Micke, G. A., Pizzolatti, M. G., & Brighente, I. M. C. (2014). Myricitrin as the main constituent of two species of Myrcia. Journal of Applied Pharmaceutical Science, 1–7. https://doi.org/10.7324/JAPS.2014.40201

Mousavi, S. S., Karami, A., Haghighi, T. M., Alizadeh, S., & Maggi, F. (2021). Phytotoxic Potential and Phenolic Profile of Extracts from Scrophularia striata. Plants, 10(1), 135. https://doi.org/10.3390/plants10010135

Nasir, H., Iqbal, Z., Hiradate, S., & Fujii, Y. (2005). Allelopathic Potential of Robinia pseudo-acacia L. Journal of Chemical Ecology, 31(9), 2179–2192. https://doi.org/10.1007/s10886-005-6084-5

Ozen, T., Demirtas, I., & Aksit, H. (2011). Determination of antioxidant activities of various extracts and essential oil compositions of Thymus praecox subsp. Skorpilii var. Skorpilii. Food Chemistry, 124(1), 58–64. https://doi.org/10.1016/j.foodchem.2010.05.103

Pardo-Muras, M., Puig, C. G., Souto, X. C., & Pedrol, N. (2020). Water-soluble phenolic acids and flavonoids involved in the bioherbicidal potential of Ulex europaeus and Cytisus scoparius. South African Journal of Botany, 133, 201–211. https://doi.org/10.1016/j.sajb.2020.07.023

Pélabon, C., Hilde, C. H., Einum, S., & Gamelon, M. (2020). On the use of the coefficient of variation to quantify and compare trait variation. Evolution Letters, 4(3), 180–188. https://doi.org/10.1002/evl3.171

Pereira, A. M., Shitsuka, D. M., Parreira, F. B., & Shitsuka, R. (2018). Metodologia de pesquisa científica. Uab/Nte/Ufsm.

Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. https://doi.org/10.1021/jf0502698

Ribeiro De Souza, E. B., Da Silva, R. R., Afonso, S., & Scarminio, I. S. (2009). Enhanced extraction yields and mobile phase separations by solvent mixtures for the analysis of metabolites in Annona muricata L. leaves. Journal of Separation Science, 32(23–24), 4176–4185. https://doi.org/10.1002/jssc.200900375

Rufino, M. do S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

Santos, C., Galaverna, R., Angolini, C., Nunes, V., de Almeida, L., Ruiz, A., de Carvalho, J., Duarte, R., Duarte, M., & Eberlin, M. (2018). Antioxidative, Antiproliferative and Antimicrobial Activities of Phenolic Compounds from Three Myrcia Species. Molecules, 23(5), 986. https://doi.org/10.3390/molecules23050986

Santos, C., Galaverna, R. S., Angolini, C. F. F., Nunes, V. V. A., De Almeida, L. F. R., Ruiz, A. L. T. G., De Carvalho, J. E., Duarte, R. M. T., Duarte, M. C. T., & Eberlin, M. N. (2018). Antioxidative, Antiproliferative and Antimicrobial Activities of Phenolic Compounds from Three Myrcia Species. Molecules, 23(5), 986. https://doi.org/10.3390/molecules23050986

Santos, C., Mizobucchi, A. L., Escaramboni, B., Lopes, B. P., Angolini, C. F. F., Eberlin, M. N., De Toledo, K. A., & Núñez, E. G. F. (2020). Optimization of Eugenia punicifolia (Kunth) D. C. leaf extraction using a simplex centroid design focused on extracting phenolics with antioxidant and antiproliferative activities. BMC Chemistry, 14(1), 34. https://doi.org/10.1186/s13065-020-00686-2

Sapra, R. L. (2014). Using R2 with caution. Current Medicine Research and Practice, 4(3), 130–134. https://doi.org/10.1016/j.cmrp.2014.06.002

Shan, Z., Zhou, S., Shah, A., Arafat, Y., Arif Hussain Rizvi, S., & Shao, H. (2023). Plant Allelopathy in Response to Biotic and Abiotic Factors. Agronomy, 13(9), 2358. https://doi.org/10.3390/agronomy13092358

Shitsuka, D. M., & Rabbith, I. (2024). Matemática Fundamental Para Tecnologia. Erica, Iatria.

Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1

Silvestre, D. M., Kolb, R. M., Frei, F., & dos Santos, C. (2013). Phytotoxicity of organic extracts of Turnera ulmifolia L. and Turnera diffusa Willd. Ex Schult. In cucumber seeds. Acta Botanica Brasilica, 27(3). https://doi.org/10.1590/S0102-33062013000300003

Singh, A., Singh, D., & Singh, N. B. (2009). Allelochemical stress produced by aqueous leachate of Nicotiana plumbaginifolia Viv. Plant Growth Regulation, 58(2), 163–171. https://doi.org/10.1007/s10725-009-9364-1

Souza Filho, A. P. S., Santos, R. A., Santos, L. S., Guilhon, G. M. P., Santos, A. S., Arruda, M. S. P., Muller, A. H., & Arruda, A. C. (2006). Potencial alelopático de Myrcia guianensis. Planta Daninha, 24(4), 649–656. https://doi.org/10.1590/S0100-83582006000400005

Takao, L. K., Imatomi, M., & Gualtieri, S. C. J. (2015). Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna). Brazilian Journal of Biology, 75(4), 948–952. https://doi.org/10.1590/1519-6984.03314

Tang, S., Wang, B., Liu, X., Xi, W., Yue, Y., Tan, X., Bai, J., & Huang, L. (2025). Structural insights and biological activities of flavonoids: Implications for novel applications. Food Frontiers, 6(1), 218–247. https://doi.org/10.1002/fft2.494

Teerarak, M., Charoenying, P., & Laosinwattana, C. (2012). Physiological and cellular mechanisms of natural herbicide resource from Aglaia odorata Lour. On bioassay plants. Acta Physiologiae Plantarum, 34(4), 1277–1285. https://doi.org/10.1007/s11738-011-0923-5

Teerarak, M., Laosinwattana, C., & Charoenying, P. (2010). Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. Var. Grandiflorum (L.) Kob. On bioassay plants. Bioresource Technology, 101(14), 5677–5684. https://doi.org/10.1016/j.biortech.2010.02.038

Yan, K., Cheng, X., Bian, G., Gao, Y., & Li, D. (2022). The Influence of Different Extraction Techniques on the Chemical Profile and Biological Properties of Oroxylum indicum: Multifunctional Aspects for Potential Pharmaceutical Applications. Evidence-Based Complementary and Alternative Medicine, 2022, 1–17. https://doi.org/10.1155/2022/8975320

Yashin, A., Yashin, Y., Xia, X., & Nemzer, B. (2017). Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants, 6(3), 70. https://doi.org/10.3390/antiox6030070

Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13(1), 20. https://doi.org/10.1186/s13020-018-0177-x

Downloads

Published

2025-09-27

Issue

Section

Exact and Earth Sciences

How to Cite

Optimizing the solvent mixture for extracting phenolic compounds with antioxidant and phytotoxicity activity from Myrcia fallax leaves using the I-optimal design. Research, Society and Development, [S. l.], v. 14, n. 9, p. e9114949574, 2025. DOI: 10.33448/rsd-v14i9.49574. Disponível em: https://rsdjournal.org/rsd/article/view/49574. Acesso em: 5 dec. 2025.