Optimización de la mezcla de solventes para la extracción de compuestos fenólicos con actividad antioxidante y fitotoxicidad de hojas de Myrcia fallax utilizando el I-optimal design
DOI:
https://doi.org/10.33448/rsd-v14i9.49574Palabras clave:
M.fallax, I-optimal, Actividad antioxidante y fitotoxicidad.Resumen
El objetivo de este estudio fue, a través de un diseño I-óptimo, mejorar la extracción del contenido fenólico total (CPT) y los compuestos flavonoides totales (CFT) de las hojas de Myrcia fallax (A. Rich) DC a partir de una mezcla de tres solventes de etanol, metanol y agua (máximo 50%) para obtener los mejores resultados de rendimiento, antioxidantes y fitotóxicos. El metanol proporcionó mayores rendimientos porcentuales de extracción, mientras que para el contenido fenólico total (CPT) y el contenido flavonoides totales (CFT), se dieron mejores valores al metanol-agua. Además, el etanol puro tuvo mejores resultados con respecto a la actividad antioxidante utilizando los métodos DPPH y ABTS. Para la evaluación de la actividad fitotóxica, se indicaron extractos de metanol-agua debido a su capacidad para inhibir la longitud de la radícula y estimular el crecimiento del hipocótilo en comparación con el control. Luego, el diseño I-óptimo nos permitió correlacionar los extractos de Myrcia fallax con sus actividades biológicas a partir de mezclas de solventes de diferente polaridad.
Referencias
Abrahim, D., Braguini, W. L., Kelmer-Bracht, A. M., & Ishii-Iwamoto, E. L. (2000). Effects of Four Monoterpenes on Germination, Primary Root Growth, and Mitochondrial Respiration of Maize. Journal of Chemical Ecology, 26(3), 611–624. https://doi.org/10.1023/A:1005467903297
Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in Pharmacology, 14, 1269581. https://doi.org/10.3389/fphar.2023.1269581
Barros-Neto, B., Scarminio, I. S., & Bruns, R. E. (2022). Como fazer experimentos: Pesquisa e desenvolvimento na ciência e na indústria. Bookman.
Bhadange, Y. A., Saharan, V. K., Sonawane, S. H., & Boczkaj, G. (2022). Intensification of catechin extraction from the bark of Syzygium cumini using ultrasonication: Optimization, characterization, degradation analysis and kinetic studies. Chemical Engineering and Processing - Process Intensification, 181, 109147. https://doi.org/10.1016/j.cep.2022.109147
Bodoira, R., & Maestri, D. (2020). Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. Journal of Agricultural and Food Chemistry, 68(4), 927–942. https://doi.org/10.1021/acs.jafc.9b07160
Bravo., H., Copaja, S., & Lamborot, M. (2013). Phytotoxicity of Phenolic Acids From Cereals. Em A. Price (Org.), Herbicides—Advances in Research. InTech. https://doi.org/10.5772/55942
Bucić-Kojić, A., Planinić, M., Tomas, S., Jokić, S., Mujić, I., Bilić, M., & Velić, D. (2011). Effect of Extraction Conditions on the Extractability of Phenolic Compounds from Lyophilised Fig Fruits (Ficus Carica L.). Polish Journal of Food and Nutrition Sciences, 61(3), 195–199. https://doi.org/10.2478/v10222-011-0021-9
Buer, C. S., & Djordjevic, M. A. (2009). Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. Journal of Experimental Botany, 60(3), 751–763. https://doi.org/10.1093/jxb/ern323
Buer, C. S., Imin, N., & Djordjevic, M. A. (2010). Flavonoids: New Roles for Old Molecules. Journal of Integrative Plant Biology, 52(1), 98–111. https://doi.org/10.1111/j.1744-7909.2010.00905.x
Candioti, V. L., De Zan, M. M., Cámara, M. S., & Goicoechea, H. C. (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124, 123–138. https://doi.org/10.1016/j.talanta.2014.01.034
Carrillo-Martinez, E. J., Flores-Hernández, F. Y., Salazar-Montes, A. M., Nario-Chaidez, H. F., & Hernández-Ortega, L. D. (2024). Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules, 29(5), 1000. https://doi.org/10.3390/molecules29051000
Cascaes, M., Guilhon, G., Andrade, E., Zoghbi, M., & Santos, L. (2015). Constituents and Pharmacological Activities of Myrcia (Myrtaceae): A Review of an Aromatic and Medicinal Group of Plants. International Journal of Molecular Sciences, 16(10), 23881–23904. https://doi.org/10.3390/ijms161023881
Chebil, L., Humeau, C., Anthoni, J., Dehez, F., Engasser, J.-M., & Ghoul, M. (2007). Solubility of Flavonoids in Organic Solvents. Journal of Chemical & Engineering Data, 52(5), 1552–1556. https://doi.org/10.1021/je7001094
Costa, M. F., Jesus, T. I., Lopes, B. R. P., Angolini, C. F. F., Montagnolli, A., Gomes, L. de P., Pereira, G. S., Ruiz, A. L. T. G., Carvalho, J. E., Eberlin, M. N., dos Santos, C., & Toledo, K. A. (2016). Eugenia aurata and Eugenia punicifolia HBK inhibit inflammatory response by reducing neutrophil adhesion, degranulation and NET release. BMC Complementary and Alternative Medicine, 16(1), 403. https://doi.org/10.1186/s12906-016-1375-7
Ćujić, N., Šavikin, K., Janković, T., Pljevljakušić, D., Zdunić, G., & Ibrić, S. (2016). Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry, 194, 135–142. https://doi.org/10.1016/j.foodchem.2015.08.008
Dai, J., & Mumper, R. J. (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313
De Martino, L., Mencherini, T., Mancini, E., Aquino, R. P., De Almeida, L. F. R., & De Feo, V. (2012). In Vitro Phytotoxicity and Antioxidant Activity of Selected Flavonoids. International Journal of Molecular Sciences, 13(5), 5406–5419. https://doi.org/10.3390/ijms13055406
DiCiaula, M. C., Lopes, G. C., Scarminio, I. S., & de Mello, J. C. P. (2014). Optimization of solvent mixtures for extraction from bark of Schinus terebinthifolius by a statistical mixture-design technique and development of a UV-Vis spectrophotometric method for analysis of total polyphenols in the extract. Química Nova, 37(1), 158–163. https://doi.org/10.1590/S0100-40422014000100026
Enujiugha, V. N., Talabi, J. Y., Malomo, S. A., & Olagunju, A. I. (2012). DPPH Radical Scavenging Capacity of Phenolic Extracts from African Yam Bean Sphenostylis stenocarpa. Food and Nutrition Sciences, 03(01), 7–13. https://doi.org/10.4236/fns.2012.31002
Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., Da Silva, E. G. P., Portugal, L. A., Dos Reis, P. S., Souza, A. S., & Dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. https://doi.org/10.1016/j.aca.2007.07.011
Franco, D. M., Saldanha, L. L., Silva, E. M., Nogueira, F. T. S., & Santos, C. (s. d.). Effects of leaf extracts of Myrcia guianensis (Aubl.) DC.: On growth and gene expression during root development of Sorghum bicolor (L.) Moench. 35(2), 237–248.
Franco, D. M., Silva, E. M., Saldanha, L. L., Adachi, S. A., Schley, T. R., Rodrigues, T. M., Dokkedal, A. L., Nogueira, F. T. S., & Rolim De Almeida, L. F. (2015). Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III. Journal of Plant Physiology, 188, 89–95. https://doi.org/10.1016/j.jplph.2015.09.009
Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules, 15(12), 8813–8826. https://doi.org/10.3390/molecules15128813
Ghaffar, N., & Perveen, A. (2024). Solvent polarity effects on extraction yield, phenolic content, and antioxidant properties of Malvaceae family seeds: A comparative study. New Zealand Journal of Botany, 1–11. https://doi.org/10.1080/0028825X.2024.2392705
Imatomi, M., Novaes, P., & Gualtieri, S. C. J. (2013). Interspecific variation in the allelopathic potential of the family Myrtaceae. Acta Botanica Brasilica, 27(1), 54–61. https://doi.org/10.1590/S0102-33062013000100008
Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of Toxicology, 97(10), 2499–2574. https://doi.org/10.1007/s00204-023-03562-9
Kalia, K., Sharma, K., Singh, H. P., & Singh, B. (2008). Effects of Extraction Methods on Phenolic Contents and Antioxidant Activity in Aerial Parts of Potentilla atrosanguinea Lodd. And Quantification of Its Phenolic Constituents by RP-HPLC †. Journal of Agricultural and Food Chemistry, 56(21), 10129–10134. https://doi.org/10.1021/jf802188b
Keerthiga, G., & Sridhar, A. (2022). Batch extraction kinetics and total phenolic content estimation of Syzygium Cumini.L bark. Indian Chemical Engineer, 64(5), 565–575. https://doi.org/10.1080/00194506.2022.2046512
Li, Z.-H., Wang, Q., Ruan, X., Pan, C.-D., & Jiang, D.-A. (2010). Phenolics and Plant Allelopathy. Molecules, 15(12), 8933–8952. https://doi.org/10.3390/molecules15128933
Mendes, M. K. D. A., Oliveira, C. B. D. S., Veras, M. D. A., Araújo, B. Q., Dantas, C., Chaves, M. H., Lopes Júnior, C. A., & Vieira, E. C. (2019). Application of multivariate optimization for the selective extraction of phenolic compounds in cashew nuts (Anacardium occidentale L.). Talanta, 205, 120100. https://doi.org/10.1016/j.talanta.2019.06.100
Miles, J. (2014). R Squared, Adjusted R Squared. Em R. S. Kenett, N. T. Longford, W. W. Piegorsch, & F. Ruggeri (Org.), Wiley StatsRef: Statistics Reference Online (1o ed.). Wiley. https://doi.org/10.1002/9781118445112.stat06627
Moresco, H. H., Pereira, M., Bretanha, L. C., Micke, G. A., Pizzolatti, M. G., & Brighente, I. M. C. (2014). Myricitrin as the main constituent of two species of Myrcia. Journal of Applied Pharmaceutical Science, 1–7. https://doi.org/10.7324/JAPS.2014.40201
Mousavi, S. S., Karami, A., Haghighi, T. M., Alizadeh, S., & Maggi, F. (2021). Phytotoxic Potential and Phenolic Profile of Extracts from Scrophularia striata. Plants, 10(1), 135. https://doi.org/10.3390/plants10010135
Nasir, H., Iqbal, Z., Hiradate, S., & Fujii, Y. (2005). Allelopathic Potential of Robinia pseudo-acacia L. Journal of Chemical Ecology, 31(9), 2179–2192. https://doi.org/10.1007/s10886-005-6084-5
Ozen, T., Demirtas, I., & Aksit, H. (2011). Determination of antioxidant activities of various extracts and essential oil compositions of Thymus praecox subsp. Skorpilii var. Skorpilii. Food Chemistry, 124(1), 58–64. https://doi.org/10.1016/j.foodchem.2010.05.103
Pardo-Muras, M., Puig, C. G., Souto, X. C., & Pedrol, N. (2020). Water-soluble phenolic acids and flavonoids involved in the bioherbicidal potential of Ulex europaeus and Cytisus scoparius. South African Journal of Botany, 133, 201–211. https://doi.org/10.1016/j.sajb.2020.07.023
Pélabon, C., Hilde, C. H., Einum, S., & Gamelon, M. (2020). On the use of the coefficient of variation to quantify and compare trait variation. Evolution Letters, 4(3), 180–188. https://doi.org/10.1002/evl3.171
Pereira, A. M., Shitsuka, D. M., Parreira, F. B., & Shitsuka, R. (2018). Metodologia de pesquisa científica. Uab/Nte/Ufsm.
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. https://doi.org/10.1021/jf0502698
Ribeiro De Souza, E. B., Da Silva, R. R., Afonso, S., & Scarminio, I. S. (2009). Enhanced extraction yields and mobile phase separations by solvent mixtures for the analysis of metabolites in Annona muricata L. leaves. Journal of Separation Science, 32(23–24), 4176–4185. https://doi.org/10.1002/jssc.200900375
Rufino, M. do S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037
Santos, C., Galaverna, R., Angolini, C., Nunes, V., de Almeida, L., Ruiz, A., de Carvalho, J., Duarte, R., Duarte, M., & Eberlin, M. (2018). Antioxidative, Antiproliferative and Antimicrobial Activities of Phenolic Compounds from Three Myrcia Species. Molecules, 23(5), 986. https://doi.org/10.3390/molecules23050986
Santos, C., Galaverna, R. S., Angolini, C. F. F., Nunes, V. V. A., De Almeida, L. F. R., Ruiz, A. L. T. G., De Carvalho, J. E., Duarte, R. M. T., Duarte, M. C. T., & Eberlin, M. N. (2018). Antioxidative, Antiproliferative and Antimicrobial Activities of Phenolic Compounds from Three Myrcia Species. Molecules, 23(5), 986. https://doi.org/10.3390/molecules23050986
Santos, C., Mizobucchi, A. L., Escaramboni, B., Lopes, B. P., Angolini, C. F. F., Eberlin, M. N., De Toledo, K. A., & Núñez, E. G. F. (2020). Optimization of Eugenia punicifolia (Kunth) D. C. leaf extraction using a simplex centroid design focused on extracting phenolics with antioxidant and antiproliferative activities. BMC Chemistry, 14(1), 34. https://doi.org/10.1186/s13065-020-00686-2
Sapra, R. L. (2014). Using R2 with caution. Current Medicine Research and Practice, 4(3), 130–134. https://doi.org/10.1016/j.cmrp.2014.06.002
Shan, Z., Zhou, S., Shah, A., Arafat, Y., Arif Hussain Rizvi, S., & Shao, H. (2023). Plant Allelopathy in Response to Biotic and Abiotic Factors. Agronomy, 13(9), 2358. https://doi.org/10.3390/agronomy13092358
Shitsuka, D. M., & Rabbith, I. (2024). Matemática Fundamental Para Tecnologia. Erica, Iatria.
Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1
Silvestre, D. M., Kolb, R. M., Frei, F., & dos Santos, C. (2013). Phytotoxicity of organic extracts of Turnera ulmifolia L. and Turnera diffusa Willd. Ex Schult. In cucumber seeds. Acta Botanica Brasilica, 27(3). https://doi.org/10.1590/S0102-33062013000300003
Singh, A., Singh, D., & Singh, N. B. (2009). Allelochemical stress produced by aqueous leachate of Nicotiana plumbaginifolia Viv. Plant Growth Regulation, 58(2), 163–171. https://doi.org/10.1007/s10725-009-9364-1
Souza Filho, A. P. S., Santos, R. A., Santos, L. S., Guilhon, G. M. P., Santos, A. S., Arruda, M. S. P., Muller, A. H., & Arruda, A. C. (2006). Potencial alelopático de Myrcia guianensis. Planta Daninha, 24(4), 649–656. https://doi.org/10.1590/S0100-83582006000400005
Takao, L. K., Imatomi, M., & Gualtieri, S. C. J. (2015). Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna). Brazilian Journal of Biology, 75(4), 948–952. https://doi.org/10.1590/1519-6984.03314
Tang, S., Wang, B., Liu, X., Xi, W., Yue, Y., Tan, X., Bai, J., & Huang, L. (2025). Structural insights and biological activities of flavonoids: Implications for novel applications. Food Frontiers, 6(1), 218–247. https://doi.org/10.1002/fft2.494
Teerarak, M., Charoenying, P., & Laosinwattana, C. (2012). Physiological and cellular mechanisms of natural herbicide resource from Aglaia odorata Lour. On bioassay plants. Acta Physiologiae Plantarum, 34(4), 1277–1285. https://doi.org/10.1007/s11738-011-0923-5
Teerarak, M., Laosinwattana, C., & Charoenying, P. (2010). Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. Var. Grandiflorum (L.) Kob. On bioassay plants. Bioresource Technology, 101(14), 5677–5684. https://doi.org/10.1016/j.biortech.2010.02.038
Yan, K., Cheng, X., Bian, G., Gao, Y., & Li, D. (2022). The Influence of Different Extraction Techniques on the Chemical Profile and Biological Properties of Oroxylum indicum: Multifunctional Aspects for Potential Pharmaceutical Applications. Evidence-Based Complementary and Alternative Medicine, 2022, 1–17. https://doi.org/10.1155/2022/8975320
Yashin, A., Yashin, Y., Xia, X., & Nemzer, B. (2017). Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants, 6(3), 70. https://doi.org/10.3390/antiox6030070
Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13(1), 20. https://doi.org/10.1186/s13020-018-0177-x
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Murilo Henrique Maciel de Camargo, Vittor Paulo Vieira da Costa, Catarina dos Santos

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.
