Methods for the removal of pesticide residues in horticultural products
DOI:
https://doi.org/10.33448/rsd-v15i1.50467Keywords:
Vegetables, Pesticide residues, Technologies.Abstract
This integrative review provides an overview of methods for removing pesticides from horticultural products, based on studies published between 2020 and 2025 in the Virtual Health Library, using the following descriptors: pesticide residues, pesticides, agrochemicals, removal, reduction, elimination, vegetables, fruits, leafy greens. The search results were evaluated and selected considering the study objective and the inclusion and exclusion criteria. A total of 30 studies were selected for analysis, description, discussion, and knowledge synthesis. All articles included in this review were published in English. The years 2021 and 2022 showed the highest number of studies (56.67%). Additionally, 12 studies (40.0%) were published by researchers affiliated with Chinese institutions. The most analyzed pesticides were: boscalid, carbendazim, chlorothalonil, difenoconazole, pyraclostrobin, acetamiprid, λ-cyhalothrin, and imidacloprid. Chromatography was the main technique used to quantify pesticide residues. The pesticide removal methods investigated by the studies evaluated in this review were: ozonation (12 studies), soaking with household ingredients (10 studies), application of high and low temperatures (8 studies), ultrasound (7 studies), electrolyzed water (3 studies), and plasma-activated liquid (3 studies). The results highlight that the effectiveness of pesticide removal methods is directly related to the chemical characteristics of the pesticides. Furthermore, it is understood that the use of a single method is not sufficient for the complete elimination of pesticide residues in vegetables. Therefore, as a strategy to enhance pesticide residue removal, the use of combined methods is recommended.
References
Aidoo, O. F., Osei-Owusu, J., Chia, S. Y., Dofuor, A. K., Antwi Agyakwa, A. K., Okyere, H., Gyan, M., E. G., Ninsin, K. D., Duker, R. Q., Siddiqui, S. A., & Borgemeister, C. (2023). Remediation of pesticide residues using ozone: A comprehensive overview. Science of the Total Environment, 894, 164933. https://doi.org/10.1016/j.scitotenv.2023
Alarcan, J., Waizenegger, J., De Solano, M., Lichtenstein, D. L. M., Luckert, C., Peijnenburg, A., Stoopen, G., Sharma, R. P., Kumar, V., Marx-Stoelting, P., Lampen, A., & Braeuning, A. (2020). Hepatotoxicity of the pesticides imazalil, thiacloprid and clothianidin – Individual and mixture effects in a 28-day study in female Wistar rats. Food and Chemical Toxicology, 140, 111306. https://doi.org/10.1016/j.fct.2020.111306
Ali, M., Cheng, J. H., & Sun, D. (2021). Effect of plasma activated water and buffer solution on fungicide degradation from tomato (Solanum lycopersicum) fruit. Food Chemistry, 350, 129195.
Ali, M., Sun, D.-W., Cheng, J.-H., & Esua, O. J. (2022). Effects of combined treatment of plasma activated liquid and ultrasound for degradation of chlorothalonil fungicide residues in tomato. Food Chemistry, 371, 131162. https://doi.org/10.1016/j.foodchem.2021.131162
Bhamdare, H., Pahade, P., Bose, D., Durgbanshi, A., Carda-Broch, S., & Peris-Vicente, J. (2024). Evaluating the effectiveness of different household washing techniques for removal of insecticides from spinach and chickpea leaves by micellar liquid chromatography. Journal of Chromatography A, 1730, 465043.
Chang, J., Dou, L., Ye, Y., & Zhang, K. (2023). Reduction in the residues of penthiopyrad in processed edible vegetables by various soaking treatments and health hazard evaluation in China. Foods, 12(4).
Chang, J., Li, W., Xu, P., Guo, B., Wang, Y., Li, J., & Wang, H. (2017). The tissue distribution, metabolism and hepatotoxicity of benzoylurea pesticides in male Eremias argus after a single oral administration. Chemosphere, 183, 1–8. https://doi.org/10.1016/j.chemosphere.2017.05.009
Chiattone, P. V., Torres, L. M., & Zambiazi, R. C. (2008). Aplicação do ozônio na indústria de alimentos. Alimentos e Nutrição, 19(3), 341–350.
Chiu, H., Sandoval-Insausti, S., Ley, S. H., Bhupathiraju, S. N., Hauser, R., Rimm, E. B., Manson, J. E., Sun, Q., & Chavarro, J. E. (2019). Association between intake of fruits and vegetables by pesticide residue status and coronary heart disease risk. Environment International, 132. https://doi.org/10.1016/j.envint.2019.105100
Concha-Meyer, A., Grandon, S., Sepúlveda, G., Diaz, R., Yuri, J. A., & Torres, C. (2019). Pesticide residues quantification in frozen fruit and vegetables in Chilean domestic market using QuEChERS extraction with UHPLC Orbitrap MS. Food Chemistry, 295, 64–71.
Cremonese, C., Piccoli, C., Pasqualotto, F., Clapauch, R., Koifman, R. J., Koifman, S., & Freire, C. (2017). Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reproductive Toxicology, 67, 174–185.
Crossetti, M. G. O. (2012). Integrative review of nursing research: scientific rigor required. Rev. Gaúcha Enferm. 33(2). https://doi.org/10.1590/S1983-14472012000200001.
Dong, S., Ou, Y., Jiao, Y., Misra, N. N., & Shi, H. (2025). Reduction of imidacloprid on strawberry using combined plasma-activated water and ultrasound treatment: efficacy and mechanisms. Food Chemistry, 493, 146059.
Du, X., Ho, L., Li, S., Doherty, J., Lee, J., Clark, J. M., & He, L. (2025). Efficacy of household and commercial washing agents in removing the pesticide thiabendazole residues from fruits. Foods, 14(318). https://doi.org/10.3390/foods14020318
Ekezie, F. G. C., Cheng, J.-H., & Sun, D.-W. (2019). Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn. Food Chemistry, 276, 147–156.
El-Nahhal, Y. (2020). Pesticide residues in honey and their potential reproductive toxicity. Science of the Total Environment, 741, 139953.
Esua, O. J., Chin, N. L., Yusof, Y. A., & Sukor, R. (2019). Combination of ultrasound and ultraviolet-C irradiation on tomato quality during storage. Journal of Food Processing and Preservation, 43(10).
FAO. (2025). Q&A on Pests and Pesticide Management. https://www.fao.org/newsroom/detail/Q-A-on-Pests-and-Pesticide-Management/en
Flamminii, F., Minetti, S., Mollica, A., Cichelli, A., & Cerretani, L. (2023). The effect of washing, blanching and frozen storage on pesticide residue in spinach. Foods, 12(14).
Gavahian, M., & Khanageh, A. M. (2020). Plasma frio como ferramenta para a eliminação de contaminantes alimentares. Food Research International, 60(9), 1581–1592.
Heshmati, A., Ebrahimi, A., Kazemi, S., Dabirian, F., & Zohal, M. (2019). Removal of pesticide residues from vegetables by washing techniques: A review. Journal of Food Measurement and Characterization, 13, 1781–1790.
Jia, M., Farid, M. U., Kharraz, J. A., Kumar, N. M., Chopra, S. S., Jang, A., Chew, J., Khanal, S. K., Chen, G., & An, A. K. (2023). Nanobubbles in water and wastewater treatment systems. Water Research, 245, 120613.
Kaur S. (2023). Barriers to consumption of fruits and vegetables and strategies to overcome them in low- and middle-income countries: a narrative review. Nutrition research reviews, 36(2), 420–447. https://doi.org/10.1017/S0954422422000166
Kaushik, V., Murudkar, S., Gohil, K., Ghatkar, S., Gode, V., & Mhaskar, S. (2020). Review on household decontamination technologies. International Journal of Food Science and Nutrition Engineering, 10, 12–36.
Kim, M., Cho, M., Im, J., Seo, C., Park, C., & Im, M.-H. (2025). Effect of stir-frying, boiling, and baking on hexaconazole in Welsh onion. Foods, 14(2).
Landeros, N., Duk, S., Márquez, C., Inzunza, B., Acuña-Rodríguez, I. S., & Zúñiga Venegas, L. A. (2022). Genotoxicity and reproductive risk in workers exposed to pesticides in rural areas of Curicó, Chile: A pilot study. International Journal of Environmental Research and Public Health, 19(24), 16608. https://doi.org/10.3390/ijerph192416608
Li, C., Yao, W., Xie, Y., Guo, Y., Cheng, Y., Yu, H., Qian, H., & Yao, W. (2021). Effects of ozone-microbubble treatment on the removal of residual pesticides and the adsorption mechanism of pesticides onto the apple matrix. Food Control, 120, 107548. https://doi.org/10.1016/j.foodcont.2020.107548
Li, X., Liu, C., Liu, F., Zhang, X., Peng, Q., Wu, G., Lin, J., & Zhao, Z. (2023). Accelerated removal of five pesticide residues in three vegetables with ozone microbubbles. Food Chemistry, 403, 134386.
Li, X., Liu, C., Liu, F., Zhang, X., Chen, X., Peng, Q., Wu, G., & Zhao, Z. (2024). Substantial removal of four pesticide residues in three fruits with ozone microbubbles. Food Chemistry, 441, 138293.
Liu, Y., Wang, J., Wan, Y., Li, N., Zhu, X., Yang, L., Liu, Y., Song, P., Cheng, M., & Xing, W. (2021). Effects of electrolyzed water treatment on pesticide removal and texture quality in fresh-cut cabbage, broccoli, and color pepper. Food Chemistry, 353, 129408. https://doi.org/10.1016/j.foodchem.2021.129408
Lozano-Paniagua, D., Parrón, T., Alarcón, R., Requena, M., López-Guarnido, O., Lacasaña, M., & Hernández, A. F. (2021). Evaluation of conventional and non-conventional biomarkers of liver toxicity in greenhouse workers occupationally exposed to pesticides. Food and Chemical Toxicology, 151, 112127. https://doi.org/10.1016/j.fct.2021.112127
Mahdavi, V., Eslami, Z., Golmohammadi, G., Tajdar-Oranj, B., Behbahan, A. K., & Khanegah, A. M. (2021aSimultaneous determination of multiple pesticide residues in Iranian saffron: A probabilistic health risk assessment. Journal of Food Composition and Analysis, 100, 103915. https://doi.org/10.1016/j.jfca.2021.103915
Melanda, V. S., Galiciolli, M. E. A., Lima, L. S., Figueiredo, B. C., & Oliveira, C. S. (2022). Impact of pesticides on cancer and congenital malformation: A systematic review. Toxics, 10(11). https://doi.org/10.3390/toxics10110676
Mir, S. A., Dar, B. N., Mir, M. M., Sofi, S. A., Shah, M. A., Sidiq, T., Sunooj, K. V., Hamdani, A. M., & Mousavi Khanegah, A. (2022). Current strategies for the reduction of pesticide residues in food products. Journal of Food Composition and Analysis, 106, 104274. https://doi.org/10.1016/j.jfca.2021.104274
Mu, S., Dou, L., Ye, Y., Chi, D., & Zhang, K. (2022). Effects of household processing on residues of the chiral fungicide mandipropamid in four common vegetables. International Journal of Environmental Research and Public Health, 19(23), 15543. https://doi.org/10.3390/ijerph192315543
Munir, S., Azeem, A., Zaman, M. S., & Haq, M. Z. U. (2024). From field to table: Ensuring food safety by reducing pesticide residues in food. Science of the Total Environment, 922, 171382. https://doi.org/10.1016/j.scitotenv.2024.171382
Nakatsu, V. A., Bronharo, T. M., & Michelin, A. de F. (2011). Solução de hipoclorito de sódio na higienização de vegetais comestíveis. Boletim do Instituto Adolfo Lutz – BIAL, (43–44).
Nematollahi, A., Rezaei, F., Afsharian, Z., & Mollakhalili-Meybodi, N. (2022). Diazinon reduction in food products: A comprehensive review of conventional and emerging processing methods. Environmental Science and Pollution Research, 27, 40342–40357. https://doi.org/10.1007/s11356-022-19294-9
Pal, P., & Anantharaman, H. (2022). CO₂ nanobubbles utility for enhanced plant growth and productivity: Recent advances in agriculture. Journal of CO₂ Utilization, 61, 102008. https://doi.org/10.1016/j.jcou.2022.102008
Pal, P., & Kioka, Y. (2024). Micro and nanobubbles enhanced ozonation technology: A synergistic approach for pesticides removal. Journal of Water Process Engineering, 58, 104106. https://doi.org/10.1016/j.jwpe.2024.104106
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Pounraj, S., Bhilwadikar, T., Manivannan, S., Rastogi, N. K., & Negi, P. S. (2020). Effect of ozone, lactic acid and combination treatments on the control of microbial and pesticide contaminants of fresh vegetables. Journal of the Science of Food and Agriculture, 100(3), 1155–1165. https://doi.org/10.1002/jsfa.10972
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria: Editora da UFSM.
Qi, Z., Tian, E., Song, Y., Sosnin, E. A., Skakun, V. S., Li, T., Xia, Y., Zhao, Y., Lin, X. S., & Liu, D. (2018). Inactivation of Shewanella putrefaciens by plasma activated water. Plasma Chemistry and Plasma Processing, 38(5), 1035–1050. https://doi.org/10.1007/s11090-018-9911-5
Rodrigues, A. A. Z., de Queiroz, M. E. L. R., Faroni, L. R. D., Prates, L. H. F., Neves, A. A., de Oliveira, A. F., de Freitas, J. F., Heleno, F. F., & Zambolim, L. (2021). The efficacy of washing strategies in the elimination of fungicide residues and the alterations on the quality of bell peppers. Food Research International, 147, 110579. https://doi.org/10.1016/j.foodres.2021.110579
Rutkowska, E., Łozowicka, B., Wołejko, E., Kaczyński, P., & Łuniewski, S. (2023). High and low temperature processing: Effective tool reducing pesticides in/on apple used in a risk assessment of dietary intake protocol. Chemosphere, 313, 137498. https://doi.org/10.1016/j.chemosphere.2022.137498
Shayanrad, P., & Hassanzadeh, N. (2024). Reduction and health risk assessment of imidacloprid insecticide residues in grapes using home washing methods. Journal of Advances in Environmental Health Research, 13(1), 35–44. https://doi.org/10.34172/jaehr.1370
Siddique, Z., Malik, AU, Asi, MR, Inam-ur-Raheem, M., Iqbal, MM, & Abdullah, M. (2021a) Impact of sonolytic ozonation (O3/US) on degradation of pesticide residues in fresh vegetables and fruits: Case study of Faisalabad, Pakistan. Ultrasonics Sonochemistry, 79.
Siddique, Z., Malik, A. U., Asi, M. R., Anwar, R., & Raheem, M. I.-U. (2021b). Sonolytic-ozonation technology for sanitizing microbial contaminants and pesticide residues from spinach (Spinacia oleracea L.) leaves, at household level. Environmental Science and Pollution Research, 28, 52913–52924. https://doi.org/10.1007/s11356-021-14203-y
Singh, S., Solanki, V., Bardhan, K., Kansara, R., Vyas, T. K., Gandhi, K., Dhakan, D., Ali, H. M., & Siddiqui, M. H. (2022). Valuation of ozonation technique for pesticide residue removal in okra and green chili using GC-ECD and LC-MS/MS. Plants, 11(23). https://doi.org/10.3390/plants11233206
Singh, A. K., Banerjee, T., Sethi, S., Tippannanavar, M., Joshi, A., Kumar, R., Dhiman, M. R., Sharma, R. M., Asrey, R., & Pandey, R. (2024). Fungicide residue degradation in hot water treated apple. Applied Fruit Science, 66, 385–397. https://doi.org/10.1007/s10341-024-01041-8
Słowik-Borowiec, M., & Szpyrka, E. (2020). Selected food processing techniques as a factor for pesticide residue removal in apple fruit. Environmental Science and Pollution Research, 27(2), 2361–2373.
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 104, 333–9.
Statista Research Department. (2024). Global pesticide agricultural use 2022, by leading country. https://www.statista.com/statistics/1263069/global-pesticide-use-by-country/
Studzinski, W., Narloch, I., & Dąbrowski, L. (2024). Removal of pesticides from lemon and vegetables using electrolyzed water kitchen devices. Molecules, 29(23).
Swami, S., Kumar, B., & Singh, S. B. (2021). Effect of ozone application on the removal of pesticides from grapes and green bell peppers and changes in their nutraceutical quality. Journal of Environmental Science and Health, Part B, 56(8), 722–730.
Terfe, A., Mekonen, S., & Jemal, T. (2023). Pesticide residues and effect of household processing in commonly consumed vegetables in Jimma Zone, Southwest Ethiopia. Journal of Environmental and Public Health, 2023, Article 7503426.
Valcke, M., Bourgault, L., Rochette, L., Normandin, O., Samuel, D., Belleville, C., Blanchet, D., & Phaneuf, D. (2017). Human health risk assessment on the consumption of fruits and vegetables containing residual pesticides: A cancer and non-cancer risk/benefit perspective. Environment International, 108, 63–74. https://doi.org/10.1016/j.envint.2017.07.015
Wallace, D. R., & Buha Djordjevic, A. (2020). Heavy metal and pesticide exposure: A mixture of potential toxicity and carcinogenicity. Current Opinion in Toxicology, 19, 72–79. https://doi.org/10.1016/j.cotox.2020.01.001
Wang, S., Wang, J., Li, C., Xu, Y., & Wu, Z. (2021). Ozone treatment pak choi for the removal of malathion and carbosulfan pesticide residues. Food Chemistry, 337, 127755.
Wasilewski, T., Hordyjewicz-Baran, Z., Zarebska, M., Zajszly-Turko, E., Zimoch, J., Kanios, A., & de Barros Sanches, M. (2022). Effect of talc particle size in detergents for fruits and vegetables on the ability to remove pesticide residues. ACS Omega, 7(29), 25046–25054.
Wen, A., Gao, F., Guo, B., Wang, L., Yuan, S., Yu, H., Guo, Y., Cheng, Y., Yang, L., & Yao, W. (2024). Electrolyzed water combined with ozone treatment for efficient removal of mancozeb residues from grapes. Journal of Food Science, 89(11), 7521–7533.
Yang, L., Zhou, J., & Feng, Y. (2022). Removal of pesticide residues from fresh vegetables by the coupled free chlorine/ultrasound process. Ultrasonics Sonochemistry, 82, 105891. https://doi.org/10.1016/j.ultsonch.2021.105891
Yang, S.-J., Mun, S., Kim, H. J., Han, S. J., Kim, D. W., Cho, B.-S., Kim, A. G., & Park, D. W. (2022). Effectiveness of different washing strategies on pesticide residue removal: The first comparative study on leafy vegetables. Foods, 11(18).
Yang, B., Wang, S., Ma, W., Li, G., Tu, M., Ma, Z., Zhang, Q., Li, H., & Li, X. (2023). Simultaneous determination of neonicotinoid and carbamate pesticides in freeze-dried cabbage by modified QuEChERS and ultra-performance liquid chromatography–tandem mass spectrometry. Foods, 12(4), 699. https://doi.org/10.3390/foods12040699
Yi, H., Zhao, Y., Rao, F., & Song, S. (2018). Hydrophobic agglomeration of talc fines in aqueous suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 327–332.
Yigit, N., & Velioglu, Y. S. (2019). Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition, 60, 3622–3641.
Yu, Y., Wang, Y., Okonkwo, C. E., Chen, L., & Zhou, C. (2024). Multimode ultrasonic-assisted decontamination of fruits and vegetables: A review. Food Chemistry, 450, 139356. https://doi.org/10.1016/j.foodchem.2024.139356
Zhang, W., Cao, J., & Jiang, W. (2021). Application of electrolyzed water in postharvest fruits and vegetables storage: A review. Trends in Food Science & Technology, 114, 599–607. https://doi.org/10.1016/j.tifs.2021.06.005
Zhao, S., Huang, X., Chen, G., Qin, H., Xu, B., Luo, Y., Liao, Y., Wang, S., Yan, S., & Zhao, J. (2024). Causal inference and mechanism for unraveling the removal of four pesticides from lettuce (Lactuca sativa L.) via ultrasonic processing and various immersion solutions. Ultrasonics Sonochemistry, 108, 106937. https://doi.org/10.1016/j.ultsonch.2024.106937
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Juliana de Oliveira Moraes, Aline Rocha

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
