Métodos de remoção de agrotóxicos em produtos hortifrutícolas

Autores

DOI:

https://doi.org/10.33448/rsd-v15i1.50467

Palavras-chave:

Vegetais, Resíduos de pesticidas, Tecnologias.

Resumo

Esta revisão integrativa traz uma visão geral acerca de métodos para remoção de agrotóxicos em produtos hortifrutícolas, através de estudos publicados entre os anos de 2020 e 2025 na Biblioteca Virtual da Saúde usando-se os termos descritores: resíduos de pesticidas, agrotóxicos, agroquímicos, remoção, redução, eliminação, hortaliças, frutas, folhosos. Os resultados das buscas foram avaliados e selecionados, considerando o objetivo do estudo e fatores de inclusão e exclusão. Foram selecionados 30 estudos para análise, descrição, discussão e síntese do conhecimento. Todos os artigos incluídos nessa revisão foram publicados na língua inglesa. Os anos de 2021 e 2022 apresentaram os maiores números de estudos (56,67%). Além disso, 12 estudos (40,0%) foram publicados por pesquisadores vinculados a instituições chinesas. Os agrotóxicos mais analisados foram: boscalida, carbendazim, clorotalonil, difenoconazol, piraclostrobina, acetamiprid, λ-cialotrina e imidacloprido. A cromatografia foi a principal técnica utilizada nas quantificações dos resíduos dos agrotóxicos. Os métodos de remoção de agrotóxicos investigados pelos estudos avaliados nessa revisão foram: ozonização (12 estudos), imersão com ingredientes domésticos (10 estudos), aplicação de altas e baixas temperaturas (8 estudos), ultrassom (7 estudos), água eletrolisada (3 estudos) e líquido ativado por plasma (3 estudos). Os resultados destacam que a eficácia dos métodos de remoção de agrotóxicos está diretamente relacionada com características químicas dos agrotóxicos. Ademais, entende-se que o uso de um método isoladamente não é suficiente para eliminação total de resíduos de agrotóxicos em produtos hortifrutícolas. Portanto, como estrategia de potencialização dos efeitos de remoção resíduos de agrotóxicos, sugere-se o uso de métodos combinados.

Referências

Aidoo, O. F., Osei-Owusu, J., Chia, S. Y., Dofuor, A. K., Antwi Agyakwa, A. K., Okyere, H., Gyan, M., E. G., Ninsin, K. D., Duker, R. Q., Siddiqui, S. A., & Borgemeister, C. (2023). Remediation of pesticide residues using ozone: A comprehensive overview. Science of the Total Environment, 894, 164933. https://doi.org/10.1016/j.scitotenv.2023

Alarcan, J., Waizenegger, J., De Solano, M., Lichtenstein, D. L. M., Luckert, C., Peijnenburg, A., Stoopen, G., Sharma, R. P., Kumar, V., Marx-Stoelting, P., Lampen, A., & Braeuning, A. (2020). Hepatotoxicity of the pesticides imazalil, thiacloprid and clothianidin – Individual and mixture effects in a 28-day study in female Wistar rats. Food and Chemical Toxicology, 140, 111306. https://doi.org/10.1016/j.fct.2020.111306

Ali, M., Cheng, J. H., & Sun, D. (2021). Effect of plasma activated water and buffer solution on fungicide degradation from tomato (Solanum lycopersicum) fruit. Food Chemistry, 350, 129195.

Ali, M., Sun, D.-W., Cheng, J.-H., & Esua, O. J. (2022). Effects of combined treatment of plasma activated liquid and ultrasound for degradation of chlorothalonil fungicide residues in tomato. Food Chemistry, 371, 131162. https://doi.org/10.1016/j.foodchem.2021.131162

Bhamdare, H., Pahade, P., Bose, D., Durgbanshi, A., Carda-Broch, S., & Peris-Vicente, J. (2024). Evaluating the effectiveness of different household washing techniques for removal of insecticides from spinach and chickpea leaves by micellar liquid chromatography. Journal of Chromatography A, 1730, 465043.

Chang, J., Dou, L., Ye, Y., & Zhang, K. (2023). Reduction in the residues of penthiopyrad in processed edible vegetables by various soaking treatments and health hazard evaluation in China. Foods, 12(4).

Chang, J., Li, W., Xu, P., Guo, B., Wang, Y., Li, J., & Wang, H. (2017). The tissue distribution, metabolism and hepatotoxicity of benzoylurea pesticides in male Eremias argus after a single oral administration. Chemosphere, 183, 1–8. https://doi.org/10.1016/j.chemosphere.2017.05.009

Chiattone, P. V., Torres, L. M., & Zambiazi, R. C. (2008). Aplicação do ozônio na indústria de alimentos. Alimentos e Nutrição, 19(3), 341–350.

Chiu, H., Sandoval-Insausti, S., Ley, S. H., Bhupathiraju, S. N., Hauser, R., Rimm, E. B., Manson, J. E., Sun, Q., & Chavarro, J. E. (2019). Association between intake of fruits and vegetables by pesticide residue status and coronary heart disease risk. Environment International, 132. https://doi.org/10.1016/j.envint.2019.105100

Concha-Meyer, A., Grandon, S., Sepúlveda, G., Diaz, R., Yuri, J. A., & Torres, C. (2019). Pesticide residues quantification in frozen fruit and vegetables in Chilean domestic market using QuEChERS extraction with UHPLC Orbitrap MS. Food Chemistry, 295, 64–71.

Cremonese, C., Piccoli, C., Pasqualotto, F., Clapauch, R., Koifman, R. J., Koifman, S., & Freire, C. (2017). Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reproductive Toxicology, 67, 174–185.

Crossetti, M. G. O. (2012). Integrative review of nursing research: scientific rigor required. Rev. Gaúcha Enferm. 33(2). https://doi.org/10.1590/S1983-14472012000200001.

Dong, S., Ou, Y., Jiao, Y., Misra, N. N., & Shi, H. (2025). Reduction of imidacloprid on strawberry using combined plasma-activated water and ultrasound treatment: efficacy and mechanisms. Food Chemistry, 493, 146059.

Du, X., Ho, L., Li, S., Doherty, J., Lee, J., Clark, J. M., & He, L. (2025). Efficacy of household and commercial washing agents in removing the pesticide thiabendazole residues from fruits. Foods, 14(318). https://doi.org/10.3390/foods14020318

Ekezie, F. G. C., Cheng, J.-H., & Sun, D.-W. (2019). Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn. Food Chemistry, 276, 147–156.

El-Nahhal, Y. (2020). Pesticide residues in honey and their potential reproductive toxicity. Science of the Total Environment, 741, 139953.

Esua, O. J., Chin, N. L., Yusof, Y. A., & Sukor, R. (2019). Combination of ultrasound and ultraviolet-C irradiation on tomato quality during storage. Journal of Food Processing and Preservation, 43(10).

FAO. (2025). Q&A on Pests and Pesticide Management. https://www.fao.org/newsroom/detail/Q-A-on-Pests-and-Pesticide-Management/en

Flamminii, F., Minetti, S., Mollica, A., Cichelli, A., & Cerretani, L. (2023). The effect of washing, blanching and frozen storage on pesticide residue in spinach. Foods, 12(14).

Gavahian, M., & Khanageh, A. M. (2020). Plasma frio como ferramenta para a eliminação de contaminantes alimentares. Food Research International, 60(9), 1581–1592.

Heshmati, A., Ebrahimi, A., Kazemi, S., Dabirian, F., & Zohal, M. (2019). Removal of pesticide residues from vegetables by washing techniques: A review. Journal of Food Measurement and Characterization, 13, 1781–1790.

Jia, M., Farid, M. U., Kharraz, J. A., Kumar, N. M., Chopra, S. S., Jang, A., Chew, J., Khanal, S. K., Chen, G., & An, A. K. (2023). Nanobubbles in water and wastewater treatment systems. Water Research, 245, 120613.

Kaur S. (2023). Barriers to consumption of fruits and vegetables and strategies to overcome them in low- and middle-income countries: a narrative review. Nutrition research reviews, 36(2), 420–447. https://doi.org/10.1017/S0954422422000166

Kaushik, V., Murudkar, S., Gohil, K., Ghatkar, S., Gode, V., & Mhaskar, S. (2020). Review on household decontamination technologies. International Journal of Food Science and Nutrition Engineering, 10, 12–36.

Kim, M., Cho, M., Im, J., Seo, C., Park, C., & Im, M.-H. (2025). Effect of stir-frying, boiling, and baking on hexaconazole in Welsh onion. Foods, 14(2).

Landeros, N., Duk, S., Márquez, C., Inzunza, B., Acuña-Rodríguez, I. S., & Zúñiga Venegas, L. A. (2022). Genotoxicity and reproductive risk in workers exposed to pesticides in rural areas of Curicó, Chile: A pilot study. International Journal of Environmental Research and Public Health, 19(24), 16608. https://doi.org/10.3390/ijerph192416608

Li, C., Yao, W., Xie, Y., Guo, Y., Cheng, Y., Yu, H., Qian, H., & Yao, W. (2021). Effects of ozone-microbubble treatment on the removal of residual pesticides and the adsorption mechanism of pesticides onto the apple matrix. Food Control, 120, 107548. https://doi.org/10.1016/j.foodcont.2020.107548

Li, X., Liu, C., Liu, F., Zhang, X., Peng, Q., Wu, G., Lin, J., & Zhao, Z. (2023). Accelerated removal of five pesticide residues in three vegetables with ozone microbubbles. Food Chemistry, 403, 134386.

Li, X., Liu, C., Liu, F., Zhang, X., Chen, X., Peng, Q., Wu, G., & Zhao, Z. (2024). Substantial removal of four pesticide residues in three fruits with ozone microbubbles. Food Chemistry, 441, 138293.

Liu, Y., Wang, J., Wan, Y., Li, N., Zhu, X., Yang, L., Liu, Y., Song, P., Cheng, M., & Xing, W. (2021). Effects of electrolyzed water treatment on pesticide removal and texture quality in fresh-cut cabbage, broccoli, and color pepper. Food Chemistry, 353, 129408. https://doi.org/10.1016/j.foodchem.2021.129408

Lozano-Paniagua, D., Parrón, T., Alarcón, R., Requena, M., López-Guarnido, O., Lacasaña, M., & Hernández, A. F. (2021). Evaluation of conventional and non-conventional biomarkers of liver toxicity in greenhouse workers occupationally exposed to pesticides. Food and Chemical Toxicology, 151, 112127. https://doi.org/10.1016/j.fct.2021.112127

Mahdavi, V., Eslami, Z., Golmohammadi, G., Tajdar-Oranj, B., Behbahan, A. K., & Khanegah, A. M. (2021aSimultaneous determination of multiple pesticide residues in Iranian saffron: A probabilistic health risk assessment. Journal of Food Composition and Analysis, 100, 103915. https://doi.org/10.1016/j.jfca.2021.103915

Melanda, V. S., Galiciolli, M. E. A., Lima, L. S., Figueiredo, B. C., & Oliveira, C. S. (2022). Impact of pesticides on cancer and congenital malformation: A systematic review. Toxics, 10(11). https://doi.org/10.3390/toxics10110676

Mir, S. A., Dar, B. N., Mir, M. M., Sofi, S. A., Shah, M. A., Sidiq, T., Sunooj, K. V., Hamdani, A. M., & Mousavi Khanegah, A. (2022). Current strategies for the reduction of pesticide residues in food products. Journal of Food Composition and Analysis, 106, 104274. https://doi.org/10.1016/j.jfca.2021.104274

Mu, S., Dou, L., Ye, Y., Chi, D., & Zhang, K. (2022). Effects of household processing on residues of the chiral fungicide mandipropamid in four common vegetables. International Journal of Environmental Research and Public Health, 19(23), 15543. https://doi.org/10.3390/ijerph192315543

Munir, S., Azeem, A., Zaman, M. S., & Haq, M. Z. U. (2024). From field to table: Ensuring food safety by reducing pesticide residues in food. Science of the Total Environment, 922, 171382. https://doi.org/10.1016/j.scitotenv.2024.171382

Nakatsu, V. A., Bronharo, T. M., & Michelin, A. de F. (2011). Solução de hipoclorito de sódio na higienização de vegetais comestíveis. Boletim do Instituto Adolfo Lutz – BIAL, (43–44).

Nematollahi, A., Rezaei, F., Afsharian, Z., & Mollakhalili-Meybodi, N. (2022). Diazinon reduction in food products: A comprehensive review of conventional and emerging processing methods. Environmental Science and Pollution Research, 27, 40342–40357. https://doi.org/10.1007/s11356-022-19294-9

Pal, P., & Anantharaman, H. (2022). CO₂ nanobubbles utility for enhanced plant growth and productivity: Recent advances in agriculture. Journal of CO₂ Utilization, 61, 102008. https://doi.org/10.1016/j.jcou.2022.102008

Pal, P., & Kioka, Y. (2024). Micro and nanobubbles enhanced ozonation technology: A synergistic approach for pesticides removal. Journal of Water Process Engineering, 58, 104106. https://doi.org/10.1016/j.jwpe.2024.104106

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

Pounraj, S., Bhilwadikar, T., Manivannan, S., Rastogi, N. K., & Negi, P. S. (2020). Effect of ozone, lactic acid and combination treatments on the control of microbial and pesticide contaminants of fresh vegetables. Journal of the Science of Food and Agriculture, 100(3), 1155–1165. https://doi.org/10.1002/jsfa.10972

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria: Editora da UFSM.

Qi, Z., Tian, E., Song, Y., Sosnin, E. A., Skakun, V. S., Li, T., Xia, Y., Zhao, Y., Lin, X. S., & Liu, D. (2018). Inactivation of Shewanella putrefaciens by plasma activated water. Plasma Chemistry and Plasma Processing, 38(5), 1035–1050. https://doi.org/10.1007/s11090-018-9911-5

Rodrigues, A. A. Z., de Queiroz, M. E. L. R., Faroni, L. R. D., Prates, L. H. F., Neves, A. A., de Oliveira, A. F., de Freitas, J. F., Heleno, F. F., & Zambolim, L. (2021). The efficacy of washing strategies in the elimination of fungicide residues and the alterations on the quality of bell peppers. Food Research International, 147, 110579. https://doi.org/10.1016/j.foodres.2021.110579

Rutkowska, E., Łozowicka, B., Wołejko, E., Kaczyński, P., & Łuniewski, S. (2023). High and low temperature processing: Effective tool reducing pesticides in/on apple used in a risk assessment of dietary intake protocol. Chemosphere, 313, 137498. https://doi.org/10.1016/j.chemosphere.2022.137498

Shayanrad, P., & Hassanzadeh, N. (2024). Reduction and health risk assessment of imidacloprid insecticide residues in grapes using home washing methods. Journal of Advances in Environmental Health Research, 13(1), 35–44. https://doi.org/10.34172/jaehr.1370

Siddique, Z., Malik, AU, Asi, MR, Inam-ur-Raheem, M., Iqbal, MM, & Abdullah, M. (2021a) Impact of sonolytic ozonation (O3/US) on degradation of pesticide residues in fresh vegetables and fruits: Case study of Faisalabad, Pakistan. Ultrasonics Sonochemistry, 79.

Siddique, Z., Malik, A. U., Asi, M. R., Anwar, R., & Raheem, M. I.-U. (2021b). Sonolytic-ozonation technology for sanitizing microbial contaminants and pesticide residues from spinach (Spinacia oleracea L.) leaves, at household level. Environmental Science and Pollution Research, 28, 52913–52924. https://doi.org/10.1007/s11356-021-14203-y

Singh, S., Solanki, V., Bardhan, K., Kansara, R., Vyas, T. K., Gandhi, K., Dhakan, D., Ali, H. M., & Siddiqui, M. H. (2022). Valuation of ozonation technique for pesticide residue removal in okra and green chili using GC-ECD and LC-MS/MS. Plants, 11(23). https://doi.org/10.3390/plants11233206

Singh, A. K., Banerjee, T., Sethi, S., Tippannanavar, M., Joshi, A., Kumar, R., Dhiman, M. R., Sharma, R. M., Asrey, R., & Pandey, R. (2024). Fungicide residue degradation in hot water treated apple. Applied Fruit Science, 66, 385–397. https://doi.org/10.1007/s10341-024-01041-8

Słowik-Borowiec, M., & Szpyrka, E. (2020). Selected food processing techniques as a factor for pesticide residue removal in apple fruit. Environmental Science and Pollution Research, 27(2), 2361–2373.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 104, 333–9.

Statista Research Department. (2024). Global pesticide agricultural use 2022, by leading country. https://www.statista.com/statistics/1263069/global-pesticide-use-by-country/

Studzinski, W., Narloch, I., & Dąbrowski, L. (2024). Removal of pesticides from lemon and vegetables using electrolyzed water kitchen devices. Molecules, 29(23).

Swami, S., Kumar, B., & Singh, S. B. (2021). Effect of ozone application on the removal of pesticides from grapes and green bell peppers and changes in their nutraceutical quality. Journal of Environmental Science and Health, Part B, 56(8), 722–730.

Terfe, A., Mekonen, S., & Jemal, T. (2023). Pesticide residues and effect of household processing in commonly consumed vegetables in Jimma Zone, Southwest Ethiopia. Journal of Environmental and Public Health, 2023, Article 7503426.

Valcke, M., Bourgault, L., Rochette, L., Normandin, O., Samuel, D., Belleville, C., Blanchet, D., & Phaneuf, D. (2017). Human health risk assessment on the consumption of fruits and vegetables containing residual pesticides: A cancer and non-cancer risk/benefit perspective. Environment International, 108, 63–74. https://doi.org/10.1016/j.envint.2017.07.015

Wallace, D. R., & Buha Djordjevic, A. (2020). Heavy metal and pesticide exposure: A mixture of potential toxicity and carcinogenicity. Current Opinion in Toxicology, 19, 72–79. https://doi.org/10.1016/j.cotox.2020.01.001

Wang, S., Wang, J., Li, C., Xu, Y., & Wu, Z. (2021). Ozone treatment pak choi for the removal of malathion and carbosulfan pesticide residues. Food Chemistry, 337, 127755.

Wasilewski, T., Hordyjewicz-Baran, Z., Zarebska, M., Zajszly-Turko, E., Zimoch, J., Kanios, A., & de Barros Sanches, M. (2022). Effect of talc particle size in detergents for fruits and vegetables on the ability to remove pesticide residues. ACS Omega, 7(29), 25046–25054.

Wen, A., Gao, F., Guo, B., Wang, L., Yuan, S., Yu, H., Guo, Y., Cheng, Y., Yang, L., & Yao, W. (2024). Electrolyzed water combined with ozone treatment for efficient removal of mancozeb residues from grapes. Journal of Food Science, 89(11), 7521–7533.

Yang, L., Zhou, J., & Feng, Y. (2022). Removal of pesticide residues from fresh vegetables by the coupled free chlorine/ultrasound process. Ultrasonics Sonochemistry, 82, 105891. https://doi.org/10.1016/j.ultsonch.2021.105891

Yang, S.-J., Mun, S., Kim, H. J., Han, S. J., Kim, D. W., Cho, B.-S., Kim, A. G., & Park, D. W. (2022). Effectiveness of different washing strategies on pesticide residue removal: The first comparative study on leafy vegetables. Foods, 11(18).

Yang, B., Wang, S., Ma, W., Li, G., Tu, M., Ma, Z., Zhang, Q., Li, H., & Li, X. (2023). Simultaneous determination of neonicotinoid and carbamate pesticides in freeze-dried cabbage by modified QuEChERS and ultra-performance liquid chromatography–tandem mass spectrometry. Foods, 12(4), 699. https://doi.org/10.3390/foods12040699

Yi, H., Zhao, Y., Rao, F., & Song, S. (2018). Hydrophobic agglomeration of talc fines in aqueous suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 327–332.

Yigit, N., & Velioglu, Y. S. (2019). Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition, 60, 3622–3641.

Yu, Y., Wang, Y., Okonkwo, C. E., Chen, L., & Zhou, C. (2024). Multimode ultrasonic-assisted decontamination of fruits and vegetables: A review. Food Chemistry, 450, 139356. https://doi.org/10.1016/j.foodchem.2024.139356

Zhang, W., Cao, J., & Jiang, W. (2021). Application of electrolyzed water in postharvest fruits and vegetables storage: A review. Trends in Food Science & Technology, 114, 599–607. https://doi.org/10.1016/j.tifs.2021.06.005

Zhao, S., Huang, X., Chen, G., Qin, H., Xu, B., Luo, Y., Liao, Y., Wang, S., Yan, S., & Zhao, J. (2024). Causal inference and mechanism for unraveling the removal of four pesticides from lettuce (Lactuca sativa L.) via ultrasonic processing and various immersion solutions. Ultrasonics Sonochemistry, 108, 106937. https://doi.org/10.1016/j.ultsonch.2024.106937

Downloads

Publicado

2026-01-06

Edição

Seção

Artigos de Revisão

Como Citar

Métodos de remoção de agrotóxicos em produtos hortifrutícolas. Research, Society and Development, [S. l.], v. 15, n. 1, p. e0715150467, 2026. DOI: 10.33448/rsd-v15i1.50467. Disponível em: https://rsdjournal.org/rsd/article/view/50467. Acesso em: 23 jan. 2026.